বিপরীত ফাংশন ও পরামিতিক ফাংশনের অন্তরজ
Let the function y=f(x)y=f(x)y=f(x) be given by x=t5−5t3−20t+7x=t^{5}-5t^{3}-20t+7x=t5−5t3−20t+7 and y=4t3−3t2−18t+3y=4t^{3}-3t^{2}-18t+3y=4t3−3t2−18t+3, where tϵ(−2,2)t\epsilon \left ( -2, 2 \right )tϵ(−2,2). Then f′(x)f^{'}(x)f′(x) at t=1t=1t=1 is ?
52\displaystyle \frac{5}{2}25
25\displaystyle \frac{2}{5}52
75\displaystyle \frac{7}{5}57
none of these
Given, ;x=t5−5t3−20t+7x=t^{5}-5t^{3}-20t+7x=t5−5t3−20t+7
dxdt=5t4−15t2−20\displaystyle \frac{dx}{dt}=5t^{4}-15t^{2}-20dtdx=5t4−15t2−20
(dxdt)t=1=−30\displaystyle \left (\frac{dx}{dt}\right)_{t=1}=-30(dtdx)t=1=−30
Also, given& ;y=4t3−3t2−18t+3y=4t^{3}-3t^{2}-18t+3y=4t3−3t2−18t+3
dydt=12t2−6t−18\displaystyle \frac{dy}{dt}=12t^{2}-6t-18dtdy=12t2−6t−18
(dydt)t=1=−12\displaystyle \left (\frac{dy}{dt}\right)_{t=1}=-12(dtdy)t=1=−12
So, (dydx)t=1=25\displaystyle \left (\frac{dy}{dx}\right)_{t=1}=\frac{2}{5}(dxdy)t=1=52
If u=f(x2),v=g(x3),f(x)=sinx,g1(x)=cosxu=f(x^{2}), v=g(x^{3}),f(x)=\sin x, g^{1}(x)=\cos xu=f(x2),v=g(x3),f(x)=sinx,g1(x)=cosx then find dudv\frac{du}{dv}dvdu
x=a(θ-sinθ), y=a(1-cosθ) হলে -
নিচের কোনটি সঠিক?
y=sin−1[4x1+4x] y = \sin^{- 1}{\left [ \frac{4 \sqrt{x}}{1 + 4 x} \right ]} y=sin−1[1+4x4x] হলে, (dydx)((4,2) \left ( \frac{dy}{dx} \right )_{\left ( \left ( 4 , 2 \right ) \right.} (dxdy)((4,2) এর মান কত?
If for x∈(0,14)x \in \left(0, \dfrac{1}{4}\right)x∈(0,41), the derivative tan−1(6xx1−9x3)\tan^{-1} \left(\dfrac{6x\sqrt{x}}{1-9x^{3}}\right)tan−1(1−9x36xx) is x.g(x)\sqrt{x}.g(x)x.g(x), then g(x)g(x)g(x) equals :