ধারা
Number of different terms in the sum (1+x)2009⋅(1+x2)2008+(1+x3)2007, ( 1 + x ) ^ { 2009 } \cdot \left( 1 + x ^ { 2 } \right) ^ { 2008 } + \left( 1 + x ^ { 3 } \right) ^ { 2007 } , (1+x)2009⋅(1+x2)2008+(1+x3)2007, is
3683
4007
4017
4352
(2009+2008+2008)-(2008/2)-(2007-1)/2
The number of terms in the expansion of (3+45)124\displaystyle{(\sqrt{3} + ^4 \sqrt{5})^{124}}(3+45)124 which are integers, is equal to
P(x)=(2+x4)11,q(x)=(1+cx)n,n∈N,c P(x)=\left(2+\frac{x}{4}\right)^{11}, q(x)=(1+c x)^{n}, n \in N, c P(x)=(2+4x)11,q(x)=(1+cx)n,n∈N,c ধ্রবক।
If (1+x)2n=a0+a1x....+a2nx2n(1+x)^{2n} =a_0+a_1x....+a_{2n}x^{2n}(1+x)2n=a0+a1x....+a2nx2n, then
f(x)=(x2+3x)11…………….(i) f(x)=\left(x^{2}+\frac{3}{x}\right)^{11}…………….(i) f(x)=(x2+x3)11…………….(i)
g(x)=(1+px)m…………………….(ii) g(x)=(1+p x)^{m}…………………….(ii) g(x)=(1+px)m…………………….(ii)