স্পর্শক ও অভিলম্ব বিষয়ক

The angle at which the curve y=x2y={ x }^{ 2 } and the curve x=53cost,y=54sintx=\cfrac { 5 }{ 3 } \cos { t } ,y=\cfrac { 5 }{ 4 } \sin { t } intersect is

হানি নাটস

Given

y=x2...(i)y={ x }^{ 2 }...(i)

x=53cost;y=54sint...(ii)\quad x=\cfrac { 5 }{ 3 } \cos { t } ;y=\cfrac { 5 }{ 4 } \sin { t } ...(ii)

Which is parametric equation, we change this equation is caresian equation as follows

cost=35x;sint=45y\cos { t } =\cfrac { 3 }{ 5 } x;\sin { t } =\cfrac { 4 }{ 5 } y

On Squaring and adding both i.e., cost\cos{t} and sint\sin {t} we get

925x2+1625y2=cos2t+sin2t\cfrac { 9 }{ 25 } { x }^{ 2 }+\cfrac { 16 }{ 25 } { y }^{ 2 }=\cos ^{ 2 }{ t } +\sin ^{ 2 }{ t }

9x2+16y2=25....(iii)[cos2θ+sin2θ=1]\Rightarrow 9{ x }^{ 2 }+16{ y }^{ 2 }=25....(iii)\quad \quad \left[ \because \cos ^{ 2 }{ \theta } +\sin ^{ 2 }{ \theta } =1 \right]

\therefore The intersection points at Eq.(i) and (iii) are (1,1)(1,1) and (1,1)(-1,1)

Now, slope of tangent of Eq.(i) at point (1,1)(1,1) is

m1=dydx=2xm1=dydx(1,1)=2{ m }_{ 1 }=\cfrac { dy }{ dx } =2x\quad \therefore { m }_{ 1 }={ \left| \cfrac { dy }{ dx } \right| }_{ (1,1) }=2

And slope of tangent of Eq. (iii) at point (1,1)(1,1) is

m2=dydx=916{ m }_{ 2 }=\cfrac { dy }{ dx } =-\cfrac { 9 }{ 16 }

\therefore Angle at point of intersection of Eqs. (i) and (iii) we get

θ1=tan1m1m21+m1m2=tan1412{ \theta }_{ 1 }=\tan ^{ -1 }{ \left| \cfrac { { m }_{ 1 }-{ m }_{ 2 } }{ 1+{ m }_{ 1 }{ m }_{ 2 } } \right| } =\tan ^{ -1 }{ \cfrac { 41 }{ 2 } }

similarly, slope of tangent of Eq. (i) at point (1,1)(-1,1)

m1=dydx(1,1)=2{ m }_{ 1 }={ \left| \cfrac { dy }{ dx } \right| }_{ (-1,1) }=-2

And slope of tangent of Eq. (iii) at point (1,1)(-1,1)

m2=dydx=916{ m }_{ 2 }=\cfrac { dy }{ dx } =\cfrac { 9 }{ 16 }

\therefore Angle at point of intersection of Eqs. (i) and (iii) we get

θ2=tan1291611816=tan1412{ \theta }_{ 2 }=\tan ^{ -1 }{ \left| \cfrac {-2- \cfrac { 9 }{ 16 } }{ 1-\cfrac { 18 }{ 16 } } \right| } =\tan ^{ -1 }{ \cfrac { 41 }{ 2 } } \quad \quad

স্পর্শক ও অভিলম্ব বিষয়ক টপিকের ওপরে পরীক্ষা দাও