ক্ষেত্রফল নির্ণয়

The area ehclosed by the curves y = f(x) and ; y =g(x), where f(x) = max x,x2{x , x^2} and g(x) = min x,x2{x, x^2} opver the interval [0,1] is& ;

হানি নাটস

First, find where f(x) f(x) and g(x) g(x) intersect, i.e., where x=x2 x=x^{2} :

x=x2x2x=0x(x1)=0x=0 or x=1 x=x^{2} \Longrightarrow x^{2}-x=0 \Longrightarrow x(x-1)=0 \Longrightarrow x=0 \text { or } x=1

So, the curves intersect at x=0 x=0 and x=1 x=1 .


Step 2: Identify the Upper and Lower Functions

For x x in the interval [0,1] [0,1] :

- f(x)=max(x,x2) f(x)=\max \left(x, x^{2}\right)

- g(x)=min(x,x2) g(x)=\min \left(x, x^{2}\right)



Step 3: Compare x x and x2 x^{2} on [0,1] [0,1]

- For 0x1,x2x 0 \leq x \leq 1, x^{2} \leq x because x2 x^{2} grows slower than x x in this interval.

- Therefore, max(x,x2)=x \max \left(x, x^{2}\right)=x and min(x,x2)=x2 \min \left(x, x^{2}\right)=x^{2} .

Step 4: Set Up the Integral for the Area

The area A A between the curves from x=0 x=0 to x=1 x=1 is given by:

A=01(f(x)g(x))dx=01(xx2)dx A=\int_{0}^{1}(f(x)-g(x)) d x=\int_{0}^{1}\left(x-x^{2}\right) d x


Step 5: Compute the Integral

Evaluate the integral:

A=01(xx2)dx=[x22x33]01=(1213)(00)=1213=16 A=\int_{0}^{1}\left(x-x^{2}\right) d x=\left[\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{1}=\left(\frac{1}{2}-\frac{1}{3}\right)-(0-0)=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}

Final Answer

The area enclosed by the curves y=f(x) y=f(x) and y=g(x) y=g(x) over the interval [0,1] [0,1] is:

16 \begin{array}{|l|} \hline \frac{1}{6} \\ \hline \end{array}

ক্ষেত্রফল নির্ণয় টপিকের ওপরে পরীক্ষা দাও