বৃত্তের সমীকরণ ও পোলার সমীকরণ সংক্রান্ত
The centres of a set of circles, each of radius , lie on the circle . The lotus of any point in the set is ;
- The centers of the circles lie on the circle . This means the centers are at a distance of 5 units (since the radius of this circle is ) from the origin.
- Each of these circles has a radius of 3 .
- We need to find the locus of all points that lie on any of these circles.
Visualize the Situation
- The centers of the circles lie on a circle of radius 5 .
- Each of these circles has a radius of 3 .
- The locus of all points on these circles will form a ring (annulus) around the original circle.
Find the Locus
The locus of all points on these circles will be the set of points that are at a distance of from the origin. This is because:
- The farthest point from the origin will be at a distance of .
- The closest point from the origin will be at a distance of .
Thus, the locus of any point in the set is the region between two concentric circles with radii 2 and 8 , centered at the origin.
The locus is the set of all points such that:
or
Final Answer:
The locus of any point in the set is the region between the circles and . In inequality form, this is:
Ai এর মাধ্যমে
১০ লক্ষ+ প্রশ্ন ডাটাবেজ
প্র্যাকটিস এর মাধ্যমে নিজেকে তৈরি করে ফেলো
উত্তর দিবে তোমার বই থেকে ও তোমার মত করে।
সারা দেশের শিক্ষার্থীদের মধ্যে নিজের অবস্থান যাচাই