x^n এর সহগ নির্ণয় বিষয়ক

The coefficient of x2x^2 in expansion of the product
(2-x2x^2).((1+2x+3x2)6(1 + 2x + 3x^2)^6 + (114x2)6(1-1 4x^2)^6) is :

কাজু বাদাম

(2x2)[(1+2x+3x2)6+(14x2)6]=2[(1+2x+3x2)6+(14x2)6]x2[(1+2x+3x2)6+(14x2)6] coefficient of x2=2 coefficient of x2 in [(1+2x+3x2)6+(14x2)6] constant term in [(1+2x+3x2)6+(14x2)6](1+2x+3x2)6=r=066Cr(2x+3x2)r=6C0+6C1(2x+3x2)+6C2(2x+3x2)2+ coefficient of x2=2(18+6024)2=106 \begin{array}{l}\left(2-x^{2}\right)\left[\left(1+2 x+3 x^{2}\right)^{6}+\left(1-4 x^{2}\right)^{6}\right] \\ =2\left[\left(1+2 x+3 x^{2}\right)^{6}+\left(1-4 x^{2}\right)^{6}\right]-x^{2}\left[\left(1+2 x+3 x^{2}\right)^{6}+\left(1-4 x^{2}\right)^{6}\right] \\ \Rightarrow \text { coefficient of } x^{2}=2 \cdot \text { coefficient of } x^{2} \text { in }\left[\left(1+2 x+3 x^{2}\right)^{6}+\left(1-4 x^{2}\right)^{6}\right] \\ - \text { constant term in }\left[\left(1+2 x+3 x^{2}\right)^{6}+\left(1-4 x^{2}\right)^{6}\right] \\ \left(1+2 x+3 x^{2}\right)^{6}=\sum_{r=0}^{6}{ }^{6} C_{r}\left(2 x+3 x^{2}\right)^{r} \\ ={ }^{6} C_{0}+{ }^{6} C_{1}\left(2 x+3 x^{2}\right)+{ }^{6} C_{2}\left(2 x+3 x^{2}\right)^{2}+\ldots \\ \Rightarrow \text { coefficient of } x^{2}=2(18+60-24)-2=106\end{array}

x^n এর সহগ নির্ণয় বিষয়ক টপিকের ওপরে পরীক্ষা দাও