উপবৃত্ত এর সমীকরণ নির্ণয়

The equation of the ellipse with axes along the x-axis and the y-axis, which passes through the points P(4, 3) and Q (6, 2) is

হানি নাটস

axes ary x x auls, jants the equation of elliple will be,

x2a2+y2b2=1 \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1

If it goes through (4,3) (4,3)

(4)2a2+32b2516a2+9b2=1 \begin{array}{l} \rightarrow \frac{(4)^{2}}{a^{2}}+\frac{3^{2}}{b^{2}}-5 \\ \Rightarrow \frac{16}{a^{2}}+\frac{9}{b^{2}}=1 \end{array}

if it goes through (6,2) (6,2)

(6)2a2+22b2=136a2+4b2=136a2=14b2x2=36(b24b2)=36b2b24 \begin{array}{l} \rightarrow \frac{(6)^{2}}{a^{2}}+\frac{2^{2}}{b^{2}}=1 \\ \Rightarrow \frac{36}{a^{2}}+\frac{4}{b^{2}}=1 \\ \Rightarrow \frac{36}{a^{2}}=1-\frac{4}{b^{2}} \\ \Rightarrow x^{2}=\frac{36}{\left(\frac{b^{2}-4}{b^{2}}\right)}=\frac{36 b^{2}}{b^{2}-4} \end{array}

Ler, put the raluen, a2 a^{2} in - (1)

16×b2436b2+9b2=19b216+819b2=1. \begin{aligned} & 16 \times \frac{b^{2}-4}{^{36 b^{2}}}+\frac{9}{b^{2}}=1 \\ \Rightarrow & \frac{9 b^{2}-16+81}{9 b^{2}}=1 . \end{aligned}

4b2+65=9b265=5b2b2=13a2=36×13134=36×139=52 \begin{array}{l} \Rightarrow \quad 4 b^{2}+65=9 b^{2} \\ \Rightarrow \quad 65=5 b^{2} \\ \therefore b^{2}=13 \\ \therefore \quad a^{2}=\frac{36 \times 13}{13-4}=\frac{36 \times 13}{9}=52 \end{array}

equation will be

x252+y213=1 \frac{x^{2}}{52}+\frac{y^{2}}{13}=1

উপবৃত্ত এর সমীকরণ নির্ণয় টপিকের ওপরে পরীক্ষা দাও