জটিল সংখ্যার ধর্মাবলি

The minimum value of z+z1+z2|\mathrm{z}|+|\mathrm{z}-1|+|\mathrm{z}-2| is

হানি নাটস

Let z=x+iyz = x+iy

f(z)=z+z1+z2f(z) = |z| + |z-1| +|z-2|
f(x,y)=x2+y2+(x1)2+y2+(x2)2+y2f(x,y) = \sqrt{x^2 +y^2} +\sqrt { (x-1)^2+ y^2} +\sqrt {(x-2)^2 +y^2}
For minimum value, y=0y= 0
f(x)=x+x1+x2f(x) = |x| + |x-1| +|x-2| for all xx
The function can be expressed as follows
f(x)=3x3 f(x) = 3x -3 , x2x \geq 2
f(x)=x+1,f(x) = x+1, 1x<21\leq x<2
f(x)=3xf(x) = 3- x , 0x10\leq x\leq 1
f(x)=3x+3f(x) = -3x +3 , x<0 x <0
Hence, f(min)=f(1)=2f(min) = f(1) = 2

জটিল সংখ্যার ধর্মাবলি টপিকের ওপরে পরীক্ষা দাও