স্পর্শক ও অভিলম্ব বিষয়ক

The point at which the tangent to the curve ;y=x3+5\displaystyle y=x^{3}+5 is perpendicular to the line x+3y=2x + 3y = 2 are

হানি নাটস

Let point be (x1,y1)\displaystyle \left ( x_{1},y_{1} \right )

y=x3+5y = \displaystyle x^{3}+5

dydx=3x2\Rightarrow \displaystyle \dfrac{dy}{dx}=3x^{2}

Now, the slope of tangent at this point is =(dydx)x1y1=3x12=\displaystyle \left ( \frac{dy}{dx} \right )_{x_{1}y_{1}}=3x_{1}^{2}

It is& ;\displaystyle \perp to x+3y2=0x + 3y - 2 = 0

So 3x12×13=1x1=±1\displaystyle 3x_{1}^{2}\times -\frac{1}{3}=-1\Rightarrow x_1=\pm 1

Thus,

at x1=1\displaystyle x_{1}=1,             \Rightarrow                y1=6\displaystyle y_{1}=6

and at x1=1\displaystyle x_{1}=-1      \Rightarrow              y1=4\displaystyle y_{1}=4

Thus, the points are (1,6)(1, 6) and (1,4)(-1, 4)

Hence, option 'D' is correct.

স্পর্শক ও অভিলম্ব বিষয়ক টপিকের ওপরে পরীক্ষা দাও