নির্ণায়ক, ব্যতিক্রমী ও অব্যতিক্রমী ম্যাট্রিক্স
△(x)=∣2x3−3x25x+724x3−7x3x+217x3−8x2x−13∣=a0+a1x+....a4x4\triangle \left( x \right) =\begin{vmatrix} 2{ x }^{ 3 }-3{ x }^{ 2 } & 5x+7 & 2 \\ 4{ x }^{ 3 }-7x & 3x+2 & 1 \\ 7{ x }^{ 3 }-8{ x }^{ 2 } & x-1 & 3 \end{vmatrix}={ a }_{ 0 }+{ a }_{ 1 }x+....{ a }_{ 4 }{ x }^{ 4 }△(x)=2x3−3x24x3−7x7x3−8x25x+73x+2x−1213=a0+a1x+....a4x4
a0\displaystyle a_{0}a0 equals
0
1
2
3
Putting x=0x=0x=0 we get a0=?{ a }_{ 0 }=?a0=?
△(0)=a0=∣0720210−13∣=0\triangle \left( 0 \right) ={ a }_{ 0 }=\begin{vmatrix} 0 & 7 & 2 \\ 0 & 2 & 1 \\ 0 & -1 & 3 \end{vmatrix}=0△(0)=a0=00072−1213=0
∴a0=0\therefore { a }_{ 0 }=0∴a0=0
If the points (2,5),(4,6)(2,5),(4,6)(2,5),(4,6) and (a,a)(a,a)(a,a) are collinear, then the value of aaa is equal to
Three digits numbers 7x,36y 7x,36y7x,36y and 12z12z12z where x,y,zx , y , zx,y,z are integers from 000 to 9,9 ,9, are divisible by a fixed constant k.k.k. Then the determinant ∣x3176z1y2∣\left| \begin{array} { l l l } { x } & { 3 } & { 1 } \\ { 7 } & { 6 } & { z } \\ { 1 } & { y } & { 2 } \end{array} \right|x7136y1z2 +48\ +48 +48 must be divisible by
K \mathrm{K} K এর কোন মানের জন্য [K+133K−1] \left[\begin{array}{cc}K+1 & 3 \\ 3 & K-1\end{array}\right] [K+133K−1] ম্যাট্রিক্সটি বিপরীতযোগ্য নয়?
lf the lines 3x+2y−5=0, 2x−5y+3=0, 5x+by+c=03\mathrm{x}+2\mathrm{y}-5=0,\ 2\mathrm{x}-5\mathrm{y}+3=0,\ 5\mathrm{x}+\mathrm{b}\mathrm{y}+\mathrm{c}=03x+2y−5=0, 2x−5y+3=0, 5x+by+c=0 are concurrent then b+c=\mathrm{b}+\mathrm{c}=b+c=