Omega বিষয়ক
x=p+q,y=p+ x=\mathrm{p}+\mathrm{q}, y=\mathrm{p}+ x=p+q,y=p+ ωq,z=p+ω2q \omega q, z=p+\omega^{2} q ωq,z=p+ω2q হলে x3+y3+z3x^{3}+y^{3}+z^{3}x3+y3+z3=?
3(p3−q3)3(p³-q³)3(p3−q3)
3(p3+q3)3(p³+q³)3(p3+q3)
4(p3+q3)4(p³+q³)4(p3+q3)
−3(p3+q3)-3(p³+q³)−3(p3+q3)
Solve: দেওয়া আছে, x=p+q,y=p+ x=\mathrm{p}+\mathrm{q}, y=\mathrm{p}+ x=p+q,y=p+ ωq,z=p+ω2q \omega q, z=p+\omega^{2} q ωq,z=p+ω2q
x3+y3+z3=(p+q)3+(p+ωq)3+(p+ω2q)3=p3+q3+3p2q+3pq2+p3+ω3q3+3p2qω)+3pω2q2+p3+ω6q3+3p2qω2+3pq2ω4)=p3+q3+3p2q+3pq2+p3+q3+3p2qω+3pω2q2+p3+q3+3p2qω2+3pq2ω)=3(p3+q3)+3p2q(1+ω+ω2)+3pq2(1+ω+ω2)∴x3+y3+z3=3(p3+q3) \begin{aligned} & x^{3}+y^{3}+z^{3}=(p+q)^{3}+(p+\omega q)^{3} + & \left(p+\omega^{2} q\right)^{3} \\ = & \left.p^{3}+q^{3}+3 p^{2} q+3 p q^{2}+p^{3}+\omega^{3} q^{3}+3p^{2} q \omega\right) \\ + & \left.3 p \omega^{2} q^{2}+p^{3}+\omega^{6} q^{3}+3 p^{2} q \omega^{2}+3p q^{2} \omega^{4}\right) \\ = & p^{3}+q^{3}+3 p^{2} q+3 p q^{2}+p^{3}+q^{3}+3 p^{2} q \omega \\ & \left.+3 p \omega^{2} q^{2}+p^{3}+q^{3}+3 p^{2} q \omega^{2}+3 p q^{2} \omega\right) \\ = & 3\left(p^{3}+q^{3}\right)+3 p^{2} q\left(1+\omega+\omega^{2}\right)+ \\ \quad & 3 p q^{2}\left(1+\omega+\omega^{2}\right) \\ \therefore & x^{3}+y^{3}+z^{3}=3\left(p^{3}+q^{3}\right) \end{aligned} =+==∴x3+y3+z3=(p+q)3+(p+ωq)3+p3+q3+3p2q+3pq2+p3+ω3q3+3p2qω)3pω2q2+p3+ω6q3+3p2qω2+3pq2ω4)p3+q3+3p2q+3pq2+p3+q3+3p2qω+3pω2q2+p3+q3+3p2qω2+3pq2ω)3(p3+q3)+3p2q(1+ω+ω2)+3pq2(1+ω+ω2)x3+y3+z3=3(p3+q3)(p+ω2q)3
x=−1+−32then,x101+x200=? x = \frac{- 1 + \sqrt{- 3}}{2} t h e n , x^{101} + x^{200} = ? x=2−1+−3then,x101+x200=?
x2 + x + 1=0 হলে x3 এর মান কত ?
ωn=ω হলে n কে 3 দ্বারা ভাগ করলে ভাগশেষ কত হবে?
এককের কাল্পনিক ঘনমূল ω \omega ω হলে, (1+ω)(1+ω4)(1+ω8)(1+ω12) \left ( 1 + \omega \right ) \left ( 1 + \omega^{4} \right ) \left ( 1 + \omega^{8} \right ) \left ( 1 + \omega^{12} \right ) (1+ω)(1+ω4)(1+ω8)(1+ω12) এর মান কত ?