পর্যায়ক্রমিক অন্তরজ (Successive Differentiation)
y=cos2x y=\sqrt{\cos 2 x} y=cos2x হলে, (yy1)2=? \left(y y_{1}\right)^{2}= ? (yy1)2=?
1−2y4 1-2y^{4} \quad1−2y4
1−y2 1-y^{2} \quad1−y2
1+y4 1+y^{4} \quad1+y4
1−y4 1-y^{4} \quad1−y4
Solve: এখানে, y=cos2x⇒y2=cos2x y=\sqrt{\cos 2 x} \Rightarrow y^{2}=\cos 2 x y=cos2x⇒y2=cos2x উভয় পক্ষকে x x x -এর সাপেক্ষ অন্তরীকরণ করে পাই,
2yy1=−sin2x.2⇒yy1=−sin2x⇒(yy1)2=sin22x[ squaring both sides ⇒(yy1)2=1−cos22x=1−(y2)2[∵y2=cos2x]∴(yy1)2=1−y4 \begin{aligned} & 2 y y_{1}=-\sin 2 x .2 \Rightarrow y y_{1}=-\sin 2 x \\ \Rightarrow & \left(y y_{1}\right)^{2}=\sin ^{2} 2 x \quad[\text { squaring both sides } \\ \Rightarrow & \left(y y_{1}\right)^{2}=1-\cos ^{2} 2 x \\ & =1-\left(y^{2}\right)^{2} \quad\left[\because y^{2}=\cos 2 x\right] \\ \therefore \quad & \left(y y_{1}\right)^{2}=1-y^{4} \quad \text { } \end{aligned} ⇒⇒∴2yy1=−sin2x.2⇒yy1=−sin2x(yy1)2=sin22x[ squaring both sides (yy1)2=1−cos22x=1−(y2)2[∵y2=cos2x](yy1)2=1−y4
f(x)=lnx,g(x)=(x+1+x2)f(x)=\ln x, g(x)=\left(x+\sqrt{1+x^{2}}\right)f(x)=lnx,g(x)=(x+1+x2)
y=1x=x−1 y=\frac{1}{x}=x^{-1} y=x1=x−1 এর n n n তম অন্তরক সহগ নিচের কোনটি ?
y=ex y=e^{x} y=ex হলে, y4 \mathrm{y}_{4} y4 কত ?
y=lnex2 y=\operatorname{ln} e^{x^{2}} y=lnex2 হলে y2=? y_{2}=? y2=?