পর্যায়ক্রমিক অন্তরজ (Successive Differentiation)
f(x)=ln(1−x) এবং g(x)=tanx2f(x)=\ln(1-x)\ এবং\ g(x)=\tan x^2f(x)=ln(1−x) এবং g(x)=tanx2
f′′(2)f''\left(2\right)f′′(2)এর মান কত?
- 2
- 1
1
2
f(x)=ln(1−x)⇒f′(x)=−11−x⇒f′′(x)=−1(1−x)2∴f′′(2)=−1(1−2)2=−1(−1)2=−1 \begin{aligned} f(x) & =\ln (1-x) \\ \Rightarrow f^{\prime}(x) & =\frac{-1}{1-x} \\ \Rightarrow f^{\prime \prime}(x) & =\frac{-1}{(1-x)^{2}} \\ \therefore f^{\prime \prime}(2) & =\frac{-1}{(1-2)^{2}} \\ & =\frac{-1}{(-1)^{2}} \\ & =-1\end{aligned} f(x)⇒f′(x)⇒f′′(x)∴f′′(2)=ln(1−x)=1−x−1=(1−x)2−1=(1−2)2−1=(−1)2−1=−1
Ai এর মাধ্যমে
১০ লক্ষ+ প্রশ্ন ডাটাবেজ
প্র্যাকটিস এর মাধ্যমে নিজেকে তৈরি করে ফেলো
উত্তর দিবে তোমার বই থেকে ও তোমার মত করে।
সারা দেশের শিক্ষার্থীদের মধ্যে নিজের অবস্থান যাচাই
y=cos2x y=\sqrt{\cos 2 x} y=cos2x হলে, (yy1)2=? \left(y y_{1}\right)^{2}= ? (yy1)2=?
দৃশ্যকল্প: f(x,y)=x+y−2,t=2sin−1x\mathrm{ f(x, y)=\sqrt{x}+\sqrt{y}-\sqrt{2}}, \mathrm{t=2 \sin ^{-1} x} f(x,y)=x+y−2,t=2sin−1x.
y=eθg(x) \mathrm{y}=\mathrm{e}^{\operatorname{\theta g}(\mathrm{x})} y=eθg(x)
এবং