ধারা
26C0+26C1+26C2+...+26C13^{26}C_{0}+^{26}C_{1}+^{26}C_{2}+...+^{26}C_{13}26C0+26C1+26C2+...+26C13 is equal to
2252^{25}225
226+1226C132^{26}+\dfrac {1}{2}^{26}C_{13}226+2126C13
2132^{13}213
213+1226C132^{13}+\dfrac {1}{2}^{26}C_{13}213+2126C13
26C0+26C1+26C2+……+26C26=226⇒2(26C0+26C1+……+26C13)=226+26C13 \begin{array}{l}{ }^{26} C_{0}+{ }^{26} C_{1}+{ }^{26} C_{2}+\ldots \ldots+{ }^{26} C_{26}=2^{26} \\ \Rightarrow \quad 2\left({ }^{26} C_{0}+{ }^{26} C_{1}+\ldots \ldots+{ }^{26} C_{13}\right)=2^{26}+{ }^{26} C_{13}\end{array} 26C0+26C1+26C2+……+26C26=226⇒2(26C0+26C1+……+26C13)=226+26C13
Ai এর মাধ্যমে
১০ লক্ষ+ প্রশ্ন ডাটাবেজ
প্র্যাকটিস এর মাধ্যমে নিজেকে তৈরি করে ফেলো
উত্তর দিবে তোমার বই থেকে ও তোমার মত করে।
সারা দেশের শিক্ষার্থীদের মধ্যে নিজের অবস্থান যাচাই
Number of different terms in the sum (1+x)2009⋅(1+x2)2008+(1+x3)2007, ( 1 + x ) ^ { 2009 } \cdot \left( 1 + x ^ { 2 } \right) ^ { 2008 } + \left( 1 + x ^ { 3 } \right) ^ { 2007 } , (1+x)2009⋅(1+x2)2008+(1+x3)2007, is
P(x)=(2+x4)11,q(x)=(1+cx)n,n∈N,c P(x)=\left(2+\frac{x}{4}\right)^{11}, q(x)=(1+c x)^{n}, n \in N, c P(x)=(2+4x)11,q(x)=(1+cx)n,n∈N,c ধ্রবক।
f(x)=(x2+3x)11…………….(i) f(x)=\left(x^{2}+\frac{3}{x}\right)^{11}…………….(i) f(x)=(x2+x3)11…………….(i)
g(x)=(1+px)m…………………….(ii) g(x)=(1+p x)^{m}…………………….(ii) g(x)=(1+px)m…………………….(ii)
উদ্দীপক : h(x)=−8x1−x2 h(x)=\frac{-8 x}{1-x^{2}} h(x)=1−x2−8x একটি ভমাংশ এবং ∑n=1∞n!n(n−1)!3n \sum_{n=1}^{\infty} \frac{n ! n}{(n-1) ! 3^{n}} ∑n=1∞(n−1)!3nn!n হলো একটি ধারার সমষ্টি।