দ্বিঘাত ও ত্রিঘাত সমীকরণ সংক্রান্ত
F(x)=27x2+6x−(m+2),P(x)=rx2−2nx+4m F(x)=27 x^{2}+6 x-(m+2), P(x)=r x^{2}-2 n x+4 m F(x)=27x2+6x−(m+2),P(x)=rx2−2nx+4m এবং Q(x)=mx2+nx+r Q(x)=m x^{2}+n x+r Q(x)=mx2+nx+r
6x2−5x−1=0 6 x^{2}-5 x-1=0 6x2−5x−1=0 সমীকরণের মূলদ্বয়ের প্রকৃতি নির্ণয় কর।
F(x) = 0 সমীকরণটির একটি মূল অপর মূলটির দ্বিগুণের সমান হলে, m এর মান নির্ণয় কর।
P(x)=0 \mathrm{P}(\mathrm{x})=0 P(x)=0 এবং Q(x)=0 \mathrm{Q}(\mathrm{x})=0 Q(x)=0 সমীকরণ দুটির একটি সাধারণ মূল থাকলে, প্রমাণ কর যে, (2m−r)2+2n2=0 (2 m-r)^{2}+2 n^{2}=0 (2m−r)2+2n2=0 অথবা 2m+r=0 2 m+r=0 2m+r=0
দৃশ্যকল্প-১ : 3x2−4x+1=03 \mathrm{x}^2-4 \mathrm{x}+1=03x2−4x+1=0 সমীকরণের মূলদ্বয় a\mathrm{a}a ও b\mathrm{b}b.
দৃশ্যকল্প-২ : x2−qx+r=0x^2-q x+r=0x2−qx+r=0 সমীকরণের মূল দুইটি α\alphaα ও β\betaβ.
q(x)=lx2+mx+n,r(x)=nx2+mx+l \mathrm{q}(\mathrm{x})=l \mathrm{x}^{2}+\mathrm{mx}+\mathrm{n}, \mathrm{r}(\mathrm{x})=\mathrm{nx}^{2}+\mathrm{mx}+l q(x)=lx2+mx+n,r(x)=nx2+mx+l এবং z=−2−23i z=-2-2 \sqrt{3} i z=−2−23i একটি জটিল রাশি।
দৃশ্যকর-১: p(x)=(a+b+c)x2+(b+2c)x+c \mathrm{p}(\mathrm{x})=(\mathrm{a}+\mathrm{b}+\mathrm{c}) \mathrm{x}^{2}+(\mathrm{b}+2 \mathrm{c}) \mathrm{x}+ \mathrm{c} p(x)=(a+b+c)x2+(b+2c)x+c
দৃশ্যকর-২: ω \omega ω এবং ω2 \omega^{2} ω2 এককের দুইটি জটিল ঘনমূল।
উদ্দীপক-১: S: (i) ax2+2cx+2 b=0 a x^{2}+2 \mathrm{cx}+2 \mathrm{~b}=0 ax2+2cx+2 b=0, (ii) ax2+2bx+2c=0 a x^{2}+2 b x+2 c=0 ax2+2bx+2c=0
উদ্দীপক-২: 2x3−x2−22x−24=0 2 x^{3}-x^{2}-22 x-24=0 2x3−x2−22x−24=0 সমীকরণের মূলত্রয়ের দুইটির অনুপাত 3:4 3: 4 3:4