i বিষয়ক
i100+i1000+i10000+i100000=?i^{100}+i^{1000}+i^{10000}+i^{100000}=?i100+i1000+i10000+i100000=?
4
4i
i
1
i100=i4×25=1, i1000=i4×250=1i^{100}=i^{4\times25}=1,\ i^{1000}=i^{4\times250}=1i100=i4×25=1, i1000=i4×250=1
অনুরূপভাবে, i10000=i100000=1 ∴1+1+1+1=4i^{10000}=i^{100000}=1\ \therefore1+1+1+1=4 i10000=i100000=1 ∴1+1+1+1=4
The imaginary number iii is defined such that i2=−1i^2=-1i2=−1. What is the value of (1−i5)(1+i5)(1 - i \sqrt {5}) ( 1 + i\sqrt {5})(1−i5)(1+i5)?
i2=−1 i^2=-1\ i2=−1 হলে i−39i^{-39}i−39এর মান কত ?
(1+i)8+(1−i)8=(1 + i)^8 + (1 -i)^8 =(1+i)8+(1−i)8=
A+iB=2−i35−i4 A+i B=\frac{2-i 3}{5-i 4} A+iB=5−i42−i3 হলে, B \mathrm{B} B এর মান কোনটি?