ত্রিকোণমিতিক সূত্রাবলি ও ত্রিভুজের সূত্রাবলী
If cos3π9+sin3π18=m4(cosπ9+sinπ18) \cos^3\frac{\pi}{9}+ \sin^3\frac{\pi}{18} = \dfrac{m}{4} \left( \cos\frac{\pi}{9}+ \sin\frac{\pi}{18}\right)cos39π+sin318π=4m(cos9π+sin18π).Find mmm
3
5
0
-1/2
cos3π9+sin3π18=m4(cosπ9+sinπ19) \cos ^{3} \frac{\pi}{9}+\sin ^{3} \frac{\pi}{18}=\frac{m}{4}\left(\cos \frac{\pi}{9}+\sin \frac{\pi}{19}\right) cos39π+sin318π=4m(cos9π+sin19π)
cos3A=4cos3A−3cosAcos3A=cos3A+3cosA4sin3A=3sinA−sin3A4 \begin{array}{l}\cos 3 A=4 \cos ^{3} A-3 \cos A \\ \cos ^{3} A=\frac{\cos 3 A+3 \cos A}{4} \\ \sin ^{3} A=\frac{3 \sin A-\sin 3 A}{4}\end{array} cos3A=4cos3A−3cosAcos3A=4cos3A+3cosAsin3A=43sinA−sin3A
cos3π9+sin3π18=[cos3π9−sin3π18]14+34[cosπ9+sinπ18] \begin{array}{c}\cos ^{3} \frac{\pi}{9}+\sin^{3} \frac{ \pi}{18}=\left[\cos{3} \frac{ \pi}{9}-\sin{3} \frac{ \pi}{18}\right] \frac{1}{4} +\frac{3}{4}\left[\cos \frac{\pi}{9}+\sin \frac{\pi}{18}\right]\end{array} cos39π+sin318π=[cos39π−sin318π]41+43[cos9π+sin18π]
=[cosπ3−sinπ6]14+34[cosπ9+sinπ18] =\left[\cos \frac{\pi}{3}-\sin \frac{\pi}{6}\right] \frac{1}{4}+\frac{3}{4}\left[\cos \frac{\pi}{9}+\sin \frac{\pi}{18}\right] =[cos3π−sin6π]41+43[cos9π+sin18π]
=[12−12]14+34[cosπ9+sinπ18] =[\frac{1}{2}-\frac{1}{2}]^{\frac{1}{4}}+\frac{3}{4}\left[\cos \frac{\pi}{9}+\sin \frac{\pi}{18}\right] =[21−21]41+43[cos9π+sin18π]
cos3π9+sin3π18=34[cosπ9+sinπ18] \cos ^{3} \frac{\pi}{9}+\sin ^{3} \frac{\pi}{18}=\frac{3}{4}\left[\cos \frac{\pi}{9}+\sin \frac{\pi}{18}\right] cos39π+sin318π=43[cos9π+sin18π]
দৃশ্যকল্প-১: △ABC \triangle \mathrm{ABC} △ABC এর A=75∘,B−C=15∘ \mathrm{A}=75^{\circ}, \mathrm{B}-\mathrm{C}=15^{\circ} A=75∘,B−C=15∘
উদ্দীপক-১: XYZ ত্রিভুজে X+Y+Z=π X+Y+Z=\pi X+Y+Z=π
উদ্দীপক-২: sinα+sinβ=P \sin \alpha+\sin \beta=P sinα+sinβ=P এবং cosα+cosβ=Q \cos \alpha+\cos \beta=Q cosα+cosβ=Q
△ABC−9a=3,b=4,c=5 \triangle A B C-9 a=3, b=4, c=5 △ABC−9a=3,b=4,c=5 হলে-
i. 4=5cosA+3cosC \quad 4=5 \cos A+3 \cos C 4=5cosA+3cosC
ii. cosC2=12 \cos \frac{C}{2}=\frac{1}{\sqrt{2}} \quad cos2C=21
iii. Δ=6 \Delta=6 Δ=6 বর্গএকক
নিচের কোনটি সঠিক?