গুণফল ,ভাগফল ও সংযোজিত ফাংশনের অন্তরজ/Chain Rule

If f(x)f(x) is the integral of 2sinxsin2xx3, x0\dfrac{2\sin{x}-\sin{2x}}{x^{3}},\ x\neq 0. Find limx0f(x);\lim _{ x\rightarrow 0 }{ f^{ ' }\left( x \right) ; } ,& ;where f(x)=df(x)dxf^{ ' }\left( x \right) =\dfrac{df{(x)}}{dx}

হানি নাটস

f(x)=2sinxsin2xx3f(x)=\dfrac{2\sin x-\sin 2x}{x^3} x0x\neq 0

f(x)=df(x)dx=2sinxsin2xx3f'(x)=\dfrac{df(x)}{dx}=\dfrac{2\sin x-\sin 2x}{x^3}

=2sinxx(1cosxx2)=\dfrac{2\sin x}{x}\left(\dfrac{1-\cos x}{x^2}\right)

limx0f(x)=limx02(sinxx)(2sin2(x/2)x2)\Rightarrow \displaystyle \lim_{x\rightarrow 0}{f'(x)}=\displaystyle \lim_{x\rightarrow 0}{2\left(\dfrac{\sin x}{x}\right)}\left( \dfrac{2\sin^2(x/2)}{x^2}\right)

41limx0(sin2(x/2)4×(x/2)2)\Rightarrow \displaystyle 4\cdot 1 \lim_{x\rightarrow 0}{\left(\dfrac{\sin^2(x/2)}{4\times (x/2)^2}\right)}

=1=1

গুণফল ,ভাগফল ও সংযোজিত ফাংশনের অন্তরজ/Chain Rule টপিকের ওপরে পরীক্ষা দাও