গুণফল ,ভাগফল ও সংযোজিত ফাংশনের অন্তরজ/Chain Rule
If the angle between the curves y=2x y = 2^x y=2x and y=3x y=3^x y=3x is α, \alpha, α, then the value of tanα \tan \alpha tanα is equal to :
log(32)1+(log2)(log3) \dfrac { \log \left( \dfrac {3}{2} \right) } { 1 + ( \log 2)( \log 3 ) } 1+(log2)(log3)log(23)
67 \dfrac {6}{7} 76
17 \dfrac {1}{7} 71
log(6)1+(log2)(log3) \dfrac { \log \left( 6 \right) } { 1 + ( \log 2)( \log 3 ) } 1+(log2)(log3)log(6)
Given curves are y=2x y = 2^x y=2x and y=3x y =3^x y=3x
The point of intersection is 3x=2x⇒x=0 3^x = 2^x \Rightarrow x = 0 3x=2x⇒x=0
On differentiating w.r.t. x,x,x, we get
dydx=2xlog2=m1 \dfrac {dy}{dx} = 2^x \log 2 = m_1 dxdy=2xlog2=m1
and dydx=3xlog3=m2 \dfrac {dy}{dx} = 3^x \log 3 = m_2 dxdy=3xlog3=m2
Therefore, tanα=m2−m11+m1m2 \tan \alpha = \dfrac {m_2 - m_1}{1 + m_1m_2} tanα=1+m1m2m2−m1
=3xlog3−2xlog21+3x×2xlog3×log2 = \dfrac {3^x \log 3 - 2^x \log 2 }{1+3^x \times 2^x \log 3 \times \log 2} =1+3x×2xlog3×log23xlog3−2xlog2
At x=0x=0x=0,
=log321+log2log3 = \dfrac { \log \dfrac {3}{2} } { 1 + \log 2 \log 3 } =1+log2log3log23
ddx(e2x−3)= \frac{d}{d x}\left(e^{\sqrt{2 x}-3}\right)= dxd(e2x−3)= কত?
If x=acos3θx = a \cos^3 \thetax=acos3θ and y=asin3θy = a\sin^3 \thetay=asin3θ, then 1+(dydx)21 + \left( \dfrac{dy}{dx} \right )^21+(dxdy)2 is
cosx \cos{\sqrt{x}} cosx এর অন্তরক সহগ কোনটি?
Differentiate log(1+x2)\log(1+x^{2})log(1+x2) with respect tan−1x\tan^{-1}xtan−1x.