গুণফল ,ভাগফল ও সংযোজিত ফাংশনের অন্তরজ/Chain Rule

If g(x)=2f(2x33x2)+f(6x24x33)g\left( x \right) =2f\left( 2{ x }^{ 3 }-3{ x }^{ 2 } \right) +f\left( 6{ x }^{ 2 }-4{ x }^{ 3 }-3 \right)  x  R\forall \ x\ \in \ R and f(x)>0f^{''}\left( x \right) > 0,  x R\forall \ x \in \ R, then g(x)g\left ( x \right) is increasing in the interval

হানি নাটস

Any function f(x) f(x) is Increasing

 if f(x)>0 \text { if } f^{\prime}(x)>0

decreasing if f(x)<0 f^{\prime}(x)<0

Here,

g(x)=2f(2x33x2)+f(6x24x33)g(x)=2f(2x33x2)[6x26x]+f(6x24x3)[12x12x](12x212x)f(2x33x2)+(12x+2x2)f(6x24x33)12x212x[f(2x33x2)f(6x24x33)]2x33x26x24x33 \begin{array}{l} g(x)=2 f\left(2 x^{3}-3 x^{2}\right)+f\left(6 x^{2}-4 x^{3}-3\right) \\ g^{\prime}(x)=2 f^{\prime}\left(2 x^{3}-3 x^{2}\right)\left[6 x^{2}-6 x\right]+f^{\prime}\left(6 x^{2}-4 x-3\right)[12 x-12 x] \\ \Rightarrow\left(12 x^{2}-12 x\right) f^{\prime}\left(2 x^{3}-3 x^{2}\right)+\left(12 x+2 x^{2}\right) f^{\prime}\left(6 x^{2}-4 x^{3}-3\right) \\ \Rightarrow 12 x^{2}-12 x\left[f^{\prime}\left(2 x^{3}-3 x^{2}\right)-f^{\prime}\left(6 x^{2}-4 x^{3}-3\right)\right] \\ \left.2 x^{3}-3 x^{2}\right\rangle 6 x^{2}-4 x^{3}-3 \\ \end{array}

if f(x)>0 f^{\prime \prime}(x)>0

f(x) f^{\prime}(x) increasing

2x33x2+1>0(x1)(x1)(2x+1)>0 \begin{array}{l} 2 x^{3}-3 x^{2}+1>0 \\ (x-1)(x-1)(2 x+1)>0 \end{array}

f(x1)>f(x2) f^{\prime}\left(x_{1}\right)>f^{\prime}\left(x_{2}\right)

x1>x2 x_{1}>x_{2}

if

x>122x33x2>6x24x33f(2x33x2)>f(6x24x33)g(x)=12x(x1)[f(2x33x2)f(6x24x33)] \begin{array}{l} x>-\frac{1}{2} \\ \Rightarrow 2 x^{3}-3 x^{2}>6 x^{2}-4 x^{3}-3 \\ f^{\prime}\left(2 x^{3}-3 x^{2}\right)>f^{\prime}\left(6 x^{2}-4 x^{3}-3\right) \\ g^{\prime}(x)=12 x(x-1)\left[f^{\prime}\left(2 x^{3}-3 x^{2}\right)-f^{\prime}\left(6 x^{2}-4 x^{3}-3\right)\right] \\ \end{array}

x(12,0)(1,) x \in\left(-\frac{1}{2}, 0\right) \cup(1, \infty)

গুণফল ,ভাগফল ও সংযোজিত ফাংশনের অন্তরজ/Chain Rule টপিকের ওপরে পরীক্ষা দাও