If g(x)=2f(2x3−3x2)+f(6x2−4x3−3) ∀ x ∈ R and f′′(x)>0, ∀ x∈ R, then g(x) is increasing in the interval
হানি নাটস
Any function f(x) is Increasing
if f′(x)>0
decreasing if f′(x)<0
Here,
g(x)=2f(2x3−3x2)+f(6x2−4x3−3)g′(x)=2f′(2x3−3x2)[6x2−6x]+f′(6x2−4x−3)[12x−12x]⇒(12x2−12x)f′(2x3−3x2)+(12x+2x2)f′(6x2−4x3−3)⇒12x2−12x[f′(2x3−3x2)−f′(6x2−4x3−3)]2x3−3x2⟩6x2−4x3−3
if f′′(x)>0
f′(x) increasing
2x3−3x2+1>0(x−1)(x−1)(2x+1)>0
f′(x1)>f′(x2)
x1>x2
if
x>−21⇒2x3−3x2>6x2−4x3−3f′(2x3−3x2)>f′(6x2−4x3−3)g′(x)=12x(x−1)[f′(2x3−3x2)−f′(6x2−4x3−3)]
x∈(−21,0)∪(1,∞)