নির্দিষ্ট যোগজ

If f(x)={2x2+1,x14x21,x>1\quad f(x)=\begin{cases} 2{ x }^{ 2 }+1,x\le 1 \\ 4{ x }^{ 2 }-1,x>1 \end{cases}, then 02f(x)dx\int _{ 0 }^{ 2 }{ f(x)dx } is

হানি নাটস

f(x)={2x2+1,x14x21,x>1\quad f(x)=\begin{cases} 2{ x }^{ 2 }+1,x\le 1 \\ 4{ x }^{ 2 }-1,x>1 \end{cases}

from 0 to 1 we have 2x2+12x^2+1 and from 1 to 2 we have 4x214x^2-1

=01(2x2+1)dx+12(4x21)dx=\int _{ 0 }^{ 1 }{ \left( 2{ x }^{ 2 }+1 \right) dx+\int _{ 1 }^{ 2 }{ \left( 4{ x }^{ 2 }-1 \right) dx } }
=[2x33+x]01+[4x33x]12={ \left[ \frac { 2{ x }^{ 3 } }{ 3 } +x \right] }_{ 0 }^{ 1 }+{ \left[ \frac { 4{ x }^{ 3 } }{ 3 } -x \right] }_{ 1 }^{ 2 }
=23+100+4(2)332(431)=\frac { 2 }{ 3 } +1-0-0+\frac { 4{ (2) }^{ 3 } }{ 3 } -2-\left( \frac { 4 }{ 3 } -1 \right)
=23+1+323243+1=\frac { 2 }{ 3 } +1+\frac { 32 }{ 3 } -2-\frac { 4 }{ 3 } +1
=2+3243=\frac { 2+32-4 }{ 3 }
=303=\dfrac{30}{3}
=10.

নির্দিষ্ট যোগজ টপিকের ওপরে পরীক্ষা দাও