ত্রিভুজের ক্ষেত্রফল
If the area of a triangle formed by the points (k, 2k) (-2, 6) and (3, 1) is 20 square units. Find the value of k.
555
444
35\displaystyle \frac{3}{5}53
23\displaystyle \frac{2}{3}32
Area of a triangle with vertices (x1,y1)({ x }_{ 1 },{ y }_{ 1 })(x1,y1) ,(x2,y2)({ x }_{ 2 },{ y }_{ 2 })(x2,y2) and (x3,y3)({ x }_{ 3 },{ y }_{ 3 })(x3,y3) is ∣x1(y2−y3)+x2(y3−y1)+x3(y1−y2)2∣ \left| \frac { { x }_{ 1 }({ y }_{ 2 }-{ y }_{ 3 })+{ x }_{ 2 }({ y }_{ 3 }-{ y }_{ 1 })+{ x }_{ 3 }({ y }_{ 1 }-{ y }_{ 2 }) }{ 2 } \right| 2x1(y2−y3)+x2(y3−y1)+x3(y1−y2)
Hence, area of the triangle with given vertices ∣k(6−1)−2(1−2k)+3(2k−6)2∣=20 \left| \frac { k(6-1)-2(1-2k)+3(2k-6) }{ 2 } \right| = 20 2k(6−1)−2(1−2k)+3(2k−6)=20
⟹∣6k−k−2+4k+6k−182∣=20 \Longrightarrow \left| \frac { 6k-k-2+4k+6k-18 }{ 2 } \right| = 20 ⟹26k−k−2+4k+6k−18=20
∣15k−202∣=20 \left| \frac { 15k-20 }{ 2 } \right| = 20 215k−20=20
∣15k−20∣=40 \left| 15k-20 \right| = 40 ∣15k−20∣=40
15k−20=40 15k - 20 = 40 15k−20=40
15k=60 15k = 60 15k=60
k=4 k = 4k=4
Find the value of mmm if the points (5,1),(2,3)(5, 1), (2, 3)(5,1),(2,3) and (8,2m)(8, 2m )(8,2m) are collinear.
P(6,8), Q(4,0) এবং R(0,0) শীর্ষবিন্দুবিশিষ্ট ত্রিভুজের ক্ষেত্রফল কোনটি?
x=a…..(1),y=b x=a \ldots . .(1), y=b x=a…..(1),y=b…………..(2), y=mx y=m x y=mx……………(3)
এবং 2y−y=3 2 y-y=3 2y−y=3……………(4) চারটি সরলরেখার সমীকরণ।
The area of the triangle whose co-ordinates are (2012,7),(2014,7)(2012, 7), (2014, 7)(2012,7),(2014,7) and (2014,a)(2014, a)(2014,a) is 1 sq1 \,sq1sq unit. The sum of possible values of aaa is