ধারা

If Tr=2016Crx2016rT_r=^{2016}C_rx^{2016-r}, for r=0,1,,....2016r=0, 1, ,....2016, then (T0T2+T4....+T2016)2+(T1T3+T5....T2015)2(T_0 - T_2+T_4....+T_{2016})^2+(T_1-T_3+T_5....T_{2015})^2 is equal to - ;

হানি নাটস

Let ii represent iota.
(T0T2+T4++T2016)=(T0+i2T2+i4T4++i2016T2016)(1)(T_0-T_2+T_4+\dots+T_{2016}) = (T_0+i^2T_2+i^4T_4+\dots+i^{2016}T_{2016})\dots(1)
Now, multiply (T1T3+T5+T2015)(T_1-T_3+T_5+\dots-T_{2015}) with i-i to get (iT1+i3T3+i3T5++i2015T2015)(2)-(iT_1+i^3T_3+i^3T_5+\dots+i^{2015}T_{2015})\dots(2)
    (T0T2+T4++T2016)2+(T1T3+T5+T2015)2\implies (T_0-T_2+T_4+\dots+T_{2016})^2+(T_1-T_3+T_5+\dots-T_{2015})^2
=(T0+i2T2+i4T4++i2016T2016)2+i4(T1T3+T5+T2015)2= (T_0+i^2T_2+i^4T_4+\dots+i^{2016}T_{2016})^2 + i^4(T_1-T_3+T_5+\dots-T_{2015})^2
=(T0+i2T2+i4T4++i2016T2016)2(iT1+i3T3+i3T5++i2015T2015)2 = (T_0+i^2T_2+i^4T_4+\dots+i^{2016}T_{2016})^2 -(iT_1+i^3T_3+i^3T_5+\dots+i^{2015}T_{2015})^2
=(T0+iT1+i2T2++i2016T2016)(T0iT1+i2T2i3T3) = (T_0+iT_1+i^2T_2+\dots+i^{2016}T_{2016}) (T_0-iT_1+i^2T_2-i^3T_3\dots) (As a2b2=(a+b)(ab)a^2-b^2 = (a+b)(a-b))
Now, consider these terms seperately
(T0+iT1+i2T2+)=(2016C0x2016i0+2016C1x2015i1)=(i+x)2016(T_0+iT_1+i^2T_2+\dots)=(^{2016}C_0x^{2016}i^0 +^{2016}C_1x^{2015}i^1\dots) = (i+x)^{2016}
(T0iT1+i2T2i3T3)=(2016C0(ix)2016+2016C1(ix)2015)=(1+ix)2016(T_0-iT_1+i^2T_2-i^3T_3\dots) = (^{2016}C_0(ix)^{2016} +^{2016}C_1(ix)^{2015}\dots) = (1+ix)^{2016}
(T0+iT1+i2T2++i2016T2016)(T0iT1+i2T2i3T3)\therefore (T_0+iT_1+i^2T_2+\dots+i^{2016}T_{2016}) (T_0-iT_1+i^2T_2-i^3T_3\dots)
=(i+x)2016×(1+ix)2016= (i+x)^{2016}\times(1+ix)^{2016}
=[(i+x)(1+ix)]2016= [(i+x)(1+ix)]^{2016}
=[ix+x+ix2]2016= [i-x+x+ix^2]^{2016}
=(1+x2)2016= (1+x^2)^{2016}

ধারা টপিকের ওপরে পরীক্ষা দাও