ধারা
If Tr=2016Crx2016−rT_r=^{2016}C_rx^{2016-r}Tr=2016Crx2016−r, for r=0,1,,....2016r=0, 1, ,....2016r=0,1,,....2016, then (T0−T2+T4....+T2016)2+(T1−T3+T5....T2015)2(T_0 - T_2+T_4....+T_{2016})^2+(T_1-T_3+T_5....T_{2015})^2(T0−T2+T4....+T2016)2+(T1−T3+T5....T2015)2 is equal to - ;
(X2−1)1008(X^2-1)^{1008}(X2−1)1008
(X+1)2016(X+1)^{2016}(X+1)2016
(X2−1)2016(X^2-1)^{2016}(X2−1)2016
(X2+1)2016(X^2+1)^{2016}(X2+1)2016
The arithmetic mean of nC0, nC1, nC2...., nCn^nC_0 , \ ^nC_1, \ ^nC_2 ...., \ ^nC_nnC0, nC1, nC2...., nCn is ;
Number of different terms in the sum (1+x)2009⋅(1+x2)2008+(1+x3)2007, ( 1 + x ) ^ { 2009 } \cdot \left( 1 + x ^ { 2 } \right) ^ { 2008 } + \left( 1 + x ^ { 3 } \right) ^ { 2007 } , (1+x)2009⋅(1+x2)2008+(1+x3)2007, is
Find the value of 1(n−1)!+1(n−3)!3!+1(n−5)!5!+...\dfrac{1}{\left(n-1\right)!}+\dfrac{1}{\left(n-3\right)!3!}+\dfrac{1}{\left(n-5\right)!5!}+...(n−1)!1+(n−3)!3!1+(n−5)!5!1+...
(1+x)15=a0+a1x+……+a15x15⇒∑r=115rarar−1= (1+x)^{15}=a_0+a_1x+\ldots\ldots+a_{15}x^{15} \Rightarrow \sum_{r=1}^{15}r\frac{a_r}{a_{r-1}}= (1+x)15=a0+a1x+……+a15x15⇒∑r=115rar−1ar=