ধারা

Find the value of 1(n1)!+1(n3)!3!+1(n5)!5!+...\dfrac{1}{\left(n-1\right)!}+\dfrac{1}{\left(n-3\right)!3!}+\dfrac{1}{\left(n-5\right)!5!}+...

হানি নাটস

∵1!=1

∴ The given series can be written as

1(n1)!+1(n3)!3!+1(n5)!5!+...\dfrac{1}{\left(n-1\right)!}+\dfrac{1}{\left(n-3\right)!3!}+\dfrac{1}{\left(n-5\right)!5!}+...+n

∵ sum of values of each terms in fraction are equal

i.e., (n−1)+1=(n−3)+3=(n−5)+5=........

From (1)

1n! [n!(n1)!1!+n!(n3)!3!+ n!(n5)!5!+........]\frac{1}{n!}\ [\frac{n!}{(n−1)!1!}+\frac{n!}{(n−3)!3!}+\ \frac{n!}{(n−5)!5!}+........]

=1n!(nC1+nC3+nC5+......)\frac{1}{n!}(nC1+nC3+nC5+......)

=2n1n!\frac{2^{n-1}}{n!}

ধারা টপিকের ওপরে পরীক্ষা দাও