ধারা
Find the value of 1(n−1)!+1(n−3)!3!+1(n−5)!5!+...\dfrac{1}{\left(n-1\right)!}+\dfrac{1}{\left(n-3\right)!3!}+\dfrac{1}{\left(n-5\right)!5!}+...(n−1)!1+(n−3)!3!1+(n−5)!5!1+...
2n−1(n−1)!\dfrac{{2}^{n-1}}{(n-1)!}(n−1)!2n−1
2nn!\dfrac{{2}^{n}}{n!}n!2n
2n−1n!\dfrac{{2}^{n-1}}{n!}n!2n−1
None of these
∵1!=1
∴ The given series can be written as
1(n−1)!+1(n−3)!3!+1(n−5)!5!+...\dfrac{1}{\left(n-1\right)!}+\dfrac{1}{\left(n-3\right)!3!}+\dfrac{1}{\left(n-5\right)!5!}+...(n−1)!1+(n−3)!3!1+(n−5)!5!1+...+n
∵ sum of values of each terms in fraction are equal
i.e., (n−1)+1=(n−3)+3=(n−5)+5=........
From (1)
1n! [n!(n−1)!1!+n!(n−3)!3!+ n!(n−5)!5!+........]\frac{1}{n!}\ [\frac{n!}{(n−1)!1!}+\frac{n!}{(n−3)!3!}+\ \frac{n!}{(n−5)!5!}+........]n!1 [(n−1)!1!n!+(n−3)!3!n!+ (n−5)!5!n!+........]
=1n!(nC1+nC3+nC5+......)\frac{1}{n!}(nC1+nC3+nC5+......)n!1(nC1+nC3+nC5+......)
=2n−1n!\frac{2^{n-1}}{n!}n!2n−1
Number of different terms in the sum (1+x)2009⋅(1+x2)2008+(1+x3)2007, ( 1 + x ) ^ { 2009 } \cdot \left( 1 + x ^ { 2 } \right) ^ { 2008 } + \left( 1 + x ^ { 3 } \right) ^ { 2007 } , (1+x)2009⋅(1+x2)2008+(1+x3)2007, is
The number of terms in the expansion of (3+45)124\displaystyle{(\sqrt{3} + ^4 \sqrt{5})^{124}}(3+45)124 which are integers, is equal to
P(x)=(2+x4)11,q(x)=(1+cx)n,n∈N,c P(x)=\left(2+\frac{x}{4}\right)^{11}, q(x)=(1+c x)^{n}, n \in N, c P(x)=(2+4x)11,q(x)=(1+cx)n,n∈N,c ধ্রবক।