নির্ণায়ক, ব্যতিক্রমী ও অব্যতিক্রমী ম্যাট্রিক্স
Let Δ=\Delta =Δ=∣sinθcosϕsinθsinϕcosθcosθcosϕcosθsinϕ−sinθ−sinθsinϕsinθcosϕ0∣\begin{vmatrix} sin\theta cos \phi & sin\theta sin\phi & cos\theta \\ cos\theta cos\phi & cos\theta sin\phi & -sin\theta \\ -sin\theta sin\phi & sin\theta cos\phi & 0\end{vmatrix}sinθcosϕcosθcosϕ−sinθsinϕsinθsinϕcosθsinϕsinθcosϕcosθ−sinθ0, then
Δ\DeltaΔ is independent of θ\thetaθ
Δ\DeltaΔ is independent of ϕ\phiϕ
Δ\DeltaΔ is a constant
none of these
△=∣sinθ.cosϕsinθ.sinϕcosθcosθ.cosϕcosθ.sinθ−sinθ−sinθ.sinθsinθ.cosϕ0∣\triangle = \begin{vmatrix} \sin \theta . \cos \phi & \sin \theta . \sin \phi & \cos \theta \\ \cos \theta . \cos \phi & \cos \theta . \sin \theta & -\sin \theta \\ -\sin \theta. \sin \theta & \sin \theta . \cos \phi & 0 \end{vmatrix}△=sinθ.cosϕcosθ.cosϕ−sinθ.sinθsinθ.sinϕcosθ.sinθsinθ.cosϕcosθ−sinθ0
=sinθ.sinϕ(sin2θ.cosθ)−cosθ(−sinθ.cosθ.cosθ)−sinθ.sinϕ(−sin2θ.sinϕ−cos2θ−sinθ)= \sin \theta . \sin \phi (\sin^{2} \theta . \cos \theta) - \cos \theta (- \sin \theta . \cos \theta . \cos \theta)- \sin \theta . \sin \phi (- \sin^{2} \theta. \sin \phi - \cos^{2} \theta- \sin \theta)=sinθ.sinϕ(sin2θ.cosθ)−cosθ(−sinθ.cosθ.cosθ)−sinθ.sinϕ(−sin2θ.sinϕ−cos2θ−sinθ)
=sin3θ.sinϕ.cosϕ+cos2θ.sinθ.cos2ϕ+sin3θ.sin2ϕ+sinθ.cos2θ.sin2ϕ=\sin^{3} \theta . \sin \phi. \cos \phi+ \cos^{2} \theta. \sin \theta. \cos^{2} \phi+ \sin^{3} \theta. \sin^{2} \phi + \sin \theta . \cos^{2} \theta . \sin^{2} \phi=sin3θ.sinϕ.cosϕ+cos2θ.sinθ.cos2ϕ+sin3θ.sin2ϕ+sinθ.cos2θ.sin2ϕ
So, We can say that △\triangle △ is depend on both
θ\theta θ and ϕ\phiϕ
∣1−122−21−34−5∣ \left \lvert \begin{matrix} 1 & - 1 & 2 \\ 2 & - 2 & 1 \\ - 3 & 4 & - 5 \end{matrix} \right \rvert 12−3−1−2421−5 এ (3, 1) তম ভুক্তির সহগুণক কত?
Three digits numbers 7x,36y 7x,36y7x,36y and 12z12z12z where x,y,zx , y , zx,y,z are integers from 000 to 9,9 ,9, are divisible by a fixed constant k.k.k. Then the determinant ∣x3176z1y2∣\left| \begin{array} { l l l } { x } & { 3 } & { 1 } \\ { 7 } & { 6 } & { z } \\ { 1 } & { y } & { 2 } \end{array} \right|x7136y1z2 +48\ +48 +48 must be divisible by
K \mathrm{K} K এর কোন মানের জন্য [K+133K−1] \left[\begin{array}{cc}K+1 & 3 \\ 3 & K-1\end{array}\right] [K+133K−1] ম্যাট্রিক্সটি বিপরীতযোগ্য নয়?
lf the lines 3x+2y−5=0, 2x−5y+3=0, 5x+by+c=03\mathrm{x}+2\mathrm{y}-5=0,\ 2\mathrm{x}-5\mathrm{y}+3=0,\ 5\mathrm{x}+\mathrm{b}\mathrm{y}+\mathrm{c}=03x+2y−5=0, 2x−5y+3=0, 5x+by+c=0 are concurrent then b+c=\mathrm{b}+\mathrm{c}=b+c=