Let sn=1+q+q2+.................+qn and
Tn=1+(2q+1)+(2q+1)2+.........(2q+1)n
where q is a real number and q = 1.
If 101C1+101C2.S1+......+101C101.S100=αT100,thenα is equal to :-
হানি নাটস
Sn=1+q+q2+⋯+qn⇒Sn=1−q1−qn+1⋯(1)Tn=1+(2q+1)+(2q+1)+⋯+(2q−1)n⇒Tn=1−(2q+1)1−(2q+1)n+1⇒Tn=2n⋅(1−q)2n+1−(q+1)n+1⇒T100=2100(1−q)2101−(q+1)101…(2)
Now, 101C1+101C2⋅S1+⋯+101C101⋅S100=aT100
⇒∑r=1101101CrSr−1=aT100
From equation (1)
Sr−1=1−q1−qr⇒∑r=1101101Cr(1−q1−qr)=aT100⇒1−q1[∑r=1101101Cr−∑r=1101101Cr⋅qr]=aT100⇒1−q1[(2101−1)−((1+q)101−1)]=aT100
From equation (2), we get
1−q1[2101−(1+q)101]=a⋅[2100(1−q)2101−(1+q)10]⇒a=2100