লিমিট

Ltx0(1+kx)1x\operatorname{Lt}_{\mathrm{x} \rightarrow 0}(1+\mathrm{kx})^{\frac{1}{\mathrm{x}}}

RUET 12-13

Ltx0(1+kx)1x=Ltx0(1+kx)1kxk=Ltx0{(1+kx)1kx}k=ek \operatorname{Lt}_{\mathrm{x} \rightarrow 0}(1+\mathrm{kx})^{\frac{1}{\mathrm{x}}}=\underset{\mathrm{x} \rightarrow 0}{\operatorname{Lt}}(1+\mathrm{kx})^{\frac{1}{\mathrm{kx}} \cdot \mathrm{k}}=\operatorname{Lt}_{\mathrm{x} \rightarrow 0}\left\{(1+\mathrm{kx})^{\frac{1}{\mathrm{kx}}}\right\}^{\mathrm{k}}=\mathrm{e}^{\mathrm{k}}

লিমিট টপিকের ওপরে পরীক্ষা দাও