x^n এর সহগ নির্ণয় বিষয়ক
The coefficient of x3 x^3 x3 in the expansion of (1+2x)6(1−x)7 (1+2x)^6(1-x)^7 (1+2x)6(1−x)7 is
43
-43
63
-63
⇒P={1+6C1.2x+6C2.(2x)2+6C3.(2x)3+...}×{1−7C1.x+7C2.x2−7C3.x3+..}\Rightarrow P =\{ 1+^{ 6 }C_{ 1 }.2x+^{ 6 }C_{ 2 }.(2x)^{ 2 }+^{ 6 }C_{ 3 }.(2x)^{ 3 }+...\} \times \{ 1-^{ 7 }C_{ 1 }.x+^{ 7 }C_{ 2 }.x^{ 2 }-^{ 7 }C_{ 3 }.x^{ 3 }+..\} ⇒P={1+6C1.2x+6C2.(2x)2+6C3.(2x)3+...}×{1−7C1.x+7C2.x2−7C3.x3+..}
=(−35+252−420+160) = (-35 +252-420+160)=(−35+252−420+160)
The coefficient of x2x^2x2 in expansion of the product(2-x2x^2x2).((1+2x+3x2)6(1 + 2x + 3x^2)^6(1+2x+3x2)6 + (1−14x2)6(1-1 4x^2)^6(1−14x2)6) is :
The sum of the coefficients in the expansion of (1+5x−7x3)3165{\left( {1 + 5x - 7{x^3}} \right)^{3165}}(1+5x−7x3)3165 is
The sum of coefficients of integral powers of xxx in the binomial expansion of (1+2x)40{\left(1+2\sqrt{x}\right)}^{40}(1+2x)40 is
Coefficient of x15x^ {15}x15 in (1+x+x3+x4)(1+x+x^ {3}+x^ {4})(1+x+x3+x4)^ {n} is