x^n এর সহগ নির্ণয় বিষয়ক

The coefficient of x3 x^3 in the expansion of (1+2x)6(1x)7 (1+2x)^6(1-x)^7 is 

হানি নাটস

Step 1: Expand the Expression \textbf{Step 1: Expand the Expression }
Binomial Theorem is Given by-\text{Binomial Theorem is Given by-}

(1+p)n=1+nC1(p)1+nC2(p)2+nC3(p)3+..............+nCn(p)n(1+p)^n=1+^nC_{1}(p)^1+^nC_{2}(p)^2+^nC_{3}(p)^3+..............+^nC_{n}(p)^n
For expansion of(1+2x)6:\text{For expansion of} (1+2x)^6:
By Comparing with Formula p=2x and n=6\text{By Comparing with Formula p=2x and n=6}
(1+2x)6={1+6C1.2x+6C2.(2x)2+6C3.(2x)3+...}(1+2x)^6 =\{ 1+^{ 6 }C_{ 1 }.2x+^{ 6 }C_{ 2 }.(2x)^{ 2 }+^{ 6 }C_{ 3 }.(2x)^{ 3 }+...\}
For expansion of(1x)7:\text{For expansion of} (1-x)^7 :
By Comparing with Formula p=x and n=7\text{By Comparing with Formula p=x and n=7}
(1x)7={17C1.x+7C2.x27C3.x3+..........}(1-x)^7 = \{ 1-^{ 7 }C_{ 1 }.x+^{ 7 }C_{ 2 }.x^{ 2 }-^{ 7 }C_{ 3 }.x^{ 3 }+..........\}

Step 2: Find the coefficient of x3\textbf{Step 2: Find the coefficient of } \mathbf{ x^3}

Let P=(1+2x)6(1x)7 \text{Let P}= (1+2x)^6(1-x)^7

P={1+6C1.2x+6C2.(2x)2+6C3.(2x)3+...}×{17C1.x+7C2.x27C3.x3+..}\Rightarrow P =\{ 1+^{ 6 }C_{ 1 }.2x+^{ 6 }C_{ 2 }.(2x)^{ 2 }+^{ 6 }C_{ 3 }.(2x)^{ 3 }+...\} \times \{ 1-^{ 7 }C_{ 1 }.x+^{ 7 }C_{ 2 }.x^{ 2 }-^{ 7 }C_{ 3 }.x^{ 3 }+..\}

Coefficient of x3=7C3+7C2×26C1+4×6C2×(7C1)+8×7C3\therefore \text{Coefficient of }x^3 = -^{7}C_3 + ^{7}C_2 \times 2 ^{6}C_1 + 4\times ^{6}C_2 \times (- ^{7}C_1 )+8\times ^{7}C_3
=1×(35)+(12×21)+60×(7)+(160×1)=1\times(-35)+(12\times21)+60 \times (-7) + (160 \times 1)

=(35+252420+160) = (-35 +252-420+160)

=43=-43
Therefore, coefficient of x3is equal to -43\textbf{Therefore, coefficient of } \mathbf{ x^3 } \textbf{is equal to -43}

x^n এর সহগ নির্ণয় বিষয়ক টপিকের ওপরে পরীক্ষা দাও