x^n এর সহগ নির্ণয় বিষয়ক
The coefficient of x3 x^3 x3 in the expansion of (1+2x)6(1−x)7 (1+2x)^6(1-x)^7 (1+2x)6(1−x)7 is
43
-43
63
-63
(1+p)n=1+nC1(p)1+nC2(p)2+nC3(p)3+..............+nCn(p)n(1+p)^n=1+^nC_{1}(p)^1+^nC_{2}(p)^2+^nC_{3}(p)^3+..............+^nC_{n}(p)^n(1+p)n=1+nC1(p)1+nC2(p)2+nC3(p)3+..............+nCn(p)n
For expansion of(1+2x)6:\text{For expansion of} (1+2x)^6:For expansion of(1+2x)6:
For expansion of(1−x)7:\text{For expansion of} (1-x)^7 :For expansion of(1−x)7:
(1−x)7={1−7C1.x+7C2.x2−7C3.x3+..........}(1-x)^7 = \{ 1-^{ 7 }C_{ 1 }.x+^{ 7 }C_{ 2 }.x^{ 2 }-^{ 7 }C_{ 3 }.x^{ 3 }+..........\} (1−x)7={1−7C1.x+7C2.x2−7C3.x3+..........}
Let P=(1+2x)6(1−x)7 \text{Let P}= (1+2x)^6(1-x)^7 Let P=(1+2x)6(1−x)7
⇒P={1+6C1.2x+6C2.(2x)2+6C3.(2x)3+...}×{1−7C1.x+7C2.x2−7C3.x3+..}\Rightarrow P =\{ 1+^{ 6 }C_{ 1 }.2x+^{ 6 }C_{ 2 }.(2x)^{ 2 }+^{ 6 }C_{ 3 }.(2x)^{ 3 }+...\} \times \{ 1-^{ 7 }C_{ 1 }.x+^{ 7 }C_{ 2 }.x^{ 2 }-^{ 7 }C_{ 3 }.x^{ 3 }+..\} ⇒P={1+6C1.2x+6C2.(2x)2+6C3.(2x)3+...}×{1−7C1.x+7C2.x2−7C3.x3+..}
∴Coefficient of x3=−7C3+7C2×26C1+4×6C2×(−7C1)+8×7C3\therefore \text{Coefficient of }x^3 = -^{7}C_3 + ^{7}C_2 \times 2 ^{6}C_1 + 4\times ^{6}C_2 \times (- ^{7}C_1 )+8\times ^{7}C_3 ∴Coefficient of x3=−7C3+7C2×26C1+4×6C2×(−7C1)+8×7C3
=1×(−35)+(12×21)+60×(−7)+(160×1)=1\times(-35)+(12\times21)+60 \times (-7) + (160 \times 1)=1×(−35)+(12×21)+60×(−7)+(160×1)
=(−35+252−420+160) = (-35 +252-420+160)=(−35+252−420+160)
=−43=-43=−43
Therefore, coefficient of x3is equal to -43\textbf{Therefore, coefficient of } \mathbf{ x^3 } \textbf{is equal to -43}Therefore, coefficient of x3is equal to -43
Ai এর মাধ্যমে
১০ লক্ষ+ প্রশ্ন ডাটাবেজ
প্র্যাকটিস এর মাধ্যমে নিজেকে তৈরি করে ফেলো
উত্তর দিবে তোমার বই থেকে ও তোমার মত করে।
সারা দেশের শিক্ষার্থীদের মধ্যে নিজের অবস্থান যাচাই
The coefficient of x2x^2x2 in expansion of the product(2-x2x^2x2).((1+2x+3x2)6(1 + 2x + 3x^2)^6(1+2x+3x2)6 + (1−14x2)6(1-1 4x^2)^6(1−14x2)6) is :
Coefficient of x15x^ {15}x15 in (1+x+x3+x4)(1+x+x^ {3}+x^ {4})(1+x+x3+x4)^ {n} is
The cofficient of x32 x^{32} x32in the expansion of (x4−1x3)15 ( x^4 - \frac {1}{x^3})^{15} (x4−x31)15is
The coefficient of x4x ^ { 4 }x4 in the expansion of (1+x+x2+x3)11\left( 1 + x + x ^ { 2 } + x ^ { 3 } \right) ^ { 11 }(1+x+x2+x3)11 is