The differential of \(f(x)=\sqrt{\dfrac{2-x}{2+x}}\) at \(x=0\) and \(\delta x=0.15\) is - চর্চা
গুণফল ,ভাগফল ও সংযোজিত ফাংশনের অন্তরজ/Chain Rule
The differential of f(x)=2+x2−x at x=0 and δx=0.15 is
হানি নাটস
Sol n : The differential of a function is equal to the derivative of the function times the differtial of the indendent varsiable.
Let y=f(x) be the function, where x is a independent variable and the differential of the independendent vasiable is δx.
The differential of f(x) is dy=d(f(x))=f′(x)δx where f′(x) denote the derivative of function.
f(x)=2+x2−x Now f′(x)=(2+x)2−2+x⋅21(2−x)−1/2−2−x⋅21(2+x)−1/2=−21×(2+x)21[2−x2+x+2+x2−x] FORMULA =2(2+x)−1⋅4−x2(2+x)+(2−x)=−(2+x)4−x21×2 If f(x)=vu∴f′(x)=v2vv′−vv′u=2−x∵a2−b2=(a+b)(a−b)