dxdy at t=4π for x=a[cost+21logtan22t] and y=asint is
হানি নাটস
x=4π for x=a[cost+21logtan22t] and
y=asint
Differentiating w.r.t t, we get
dtdx=a[dtdcost+21dtd(logtan22t)]
dtdx=a−sint+tan2t1sec22t×21
dtdx=a−sint+2cost/2sint/2.cos2t/21
=a−sint+2sin2tcos2t1
=a[−sint+sint1]
=a[sint1−sin2t]=a[sintcos2t]
dtdy=acost
∴dxdy=dtdxdtdy=sintacos2tacost=tant
At t=4π, dxdy=1