Find ln(r), where r=34π3V
IUT 18-19
To find ln(r) given r=34π3V, we'll start by taking the natural logarithm of both sides of the equation.
r=34π3V
ln(r)=ln(34π3V)
Now, using the property of logarithms that ln(ab)=bln(a), we can get,
ln(r)=31ln(4π3V)
Since ln(ba)=ln(a)−ln(b), we can further simplify:
ln(r)=31(ln(3V)−ln(4π))
Now, using the property ln(ab)=ln(a)+ln(b), we simplify ln(4π):
ln(r)=31(ln(3V)−ln(4)−ln(π))
ln(r)=31(ln(3V)−ln(4)−ln(π))
ln(r)=31(ln(3V)−ln(4)−ln(π))
ln(r)=31(ln(3V)−ln(4)−ln(π))
ln(r)=31(ln(3)+ln(V)−ln(4)−ln(π))
ln(r)=31(ln(3)+ln(V)−ln(4)−ln(π))
So, ln(r)=31(ln(3)+ln(V)−ln(4)−ln(π)).