x^n এর সহগ নির্ণয় বিষয়ক
If AAA and BBB are coefficients of xn{x}^{n}xn in the expansions of (1+x)2n{ (1+x) }^{ 2n }(1+x)2n and (1+x)2n−1{ (1+x) }^{ 2n-1 }(1+x)2n−1 respectively, then AB\dfrac ABBA is equal to
111
222
12\dfrac 1221
1n\dfrac 1nn1
We know that coefficient of xr{x}^{r}xr in the expansion of (1+x)m{ (1+x) }^{ m }(1+x)m is mCr{ _{ }^{ m }{ C } }_{ r }mCr
Thus A=2nCn;B=2n−1CnA={ _{ }^{ 2n }{ C } }_{ n }\quad ;\quad B={ _{ }^{ 2n-1 }{ C } }_{ n }A=2nCn;B=2n−1Cn
We have
AB=2nCn2n−1Cn=(2n)!n!n!(n!)(n−1)!(2n−1)!=2nn=2\cfrac { A }{ B } =\cfrac { { _{ }^{ 2n }{ C } }_{ n } }{ { _{ }^{ 2n-1 }{ C } }_{ n } } =\cfrac { (2n)! }{ n!n! } \cfrac { (n!)(n-1)! }{ (2n-1)! } =\cfrac { 2n }{ n } =2BA=2n−1Cn2nCn=n!n!(2n)!(2n−1)!(n!)(n−1)!=n2n=2
The coefficient of x3 x^3 x3 in the expansion of (1+2x)6(1−x)7 (1+2x)^6(1-x)^7 (1+2x)6(1−x)7 is
The coefficient of x2x^2x2 in expansion of the product(2-x2x^2x2).((1+2x+3x2)6(1 + 2x + 3x^2)^6(1+2x+3x2)6 + (1−14x2)6(1-1 4x^2)^6(1−14x2)6) is :
(1-ax)⁸ এর বিস্তৃতিতে x² এবং x³ এর সহগ পরস্পর সমান হলে a এর মান কত?
(1+x1−x) \left ( \frac{1 + x}{1 - x} \right ) (1−x1+x) এর বিস্তৃতিতে x² এর সহগ কত?