ত্রিভুজের ক্ষেত্রফল
If area of a triangle is 353535 square units with vertices (2,−6), (5, 4)\left( {2, - 6} \right),\,\,\left( {5,\,\,4} \right)(2,−6),(5,4) and (k, 4)({k},\,\,4)(k,4) then k{k}k is :
−2 or 12 -2 \space \text{or} \space 12−2 or 12
121212
−2-2−2
2 or 12 2 \space \text{or} \space 122 or 12
Area of triangle =35 =35 =35 sq.units
12∣2−61541k41∣=35∣2(4−4)+6(5−k)+1(20−4k)∣=70∣30−6k+20−4k∣=70∣50−10k∣=70 \begin{array}{c} \frac{1}{2}\left|\begin{array}{ccc} 2 & -6 & 1 \\ 5 & 4 & 1 \\ k & 4 & 1 \end{array}\right|=35 \\ |2(4-4)+6(5-k)+1(20-4 k)|=70 \\ |30-6 k+20-4 k|=70 \\ |50-10 k|=70 \end{array} 2125k−644111=35∣2(4−4)+6(5−k)+1(20−4k)∣=70∣30−6k+20−4k∣=70∣50−10k∣=70
Ou Taking +ve sign,
50−10k=7010k=−20k=−2. \begin{array}{c} 50-10 k=70 \\ 10 k=-20 \\ k=-2 . \end{array} 50−10k=7010k=−20k=−2.
On taking - ve sign,
50−10k=−7010k=120k=12. \begin{array}{c} 50-10 k=-70 \\ 10 k=120 \\ k=12 . \end{array} 50−10k=−7010k=120k=12.
∴K=12,−2 \therefore K=12,-2 ∴K=12,−2
Find the value of mmm if the points (5,1),(2,3)(5, 1), (2, 3)(5,1),(2,3) and (8,2m)(8, 2m )(8,2m) are collinear.
P(6,8), Q(4,0) এবং R(0,0) শীর্ষবিন্দুবিশিষ্ট ত্রিভুজের ক্ষেত্রফল কোনটি?
x=a…..(1),y=b x=a \ldots . .(1), y=b x=a…..(1),y=b…………..(2), y=mx y=m x y=mx……………(3)
এবং 2y−y=3 2 y-y=3 2y−y=3……………(4) চারটি সরলরেখার সমীকরণ।
The area of the triangle whose co-ordinates are (2012,7),(2014,7)(2012, 7), (2014, 7)(2012,7),(2014,7) and (2014,a)(2014, a)(2014,a) is 1 sq1 \,sq1sq unit. The sum of possible values of aaa is