ত্রিকোনমিতিক ফাংশনের অন্তরজ
If f(x)=sec(3x)f(x) = \sec (3x)f(x)=sec(3x), then f′(3π4)=f'\left (\dfrac {3\pi}{4}\right ) =f′(43π)=
323\sqrt {2}32
−322-\dfrac {3\sqrt {2}}{2}−232
32\dfrac {3}{2}23
322\dfrac {3\sqrt {2}}{2}232
Given, f(x)=sec(3x)f(x) = \sec(3x)f(x)=sec(3x)
We get f′(x)=3sec(3x)tan(3x)f'\left( x \right) =3\sec(3x)\tan(3x)f′(x)=3sec(3x)tan(3x)
Therefore, we get f′(3π4)=3sec(9π4)tan(9π4)f'\left( \dfrac { 3\pi }{ 4 } \right) =3\sec\left (\dfrac { 9\pi }{ 4 }\right )\tan\left (\dfrac { 9\pi }{ 4 } \right)f′(43π)=3sec(49π)tan(49π)
=3sec(π4)tan(π4)=3\sec\left (\dfrac { \pi }{ 4 } \right)\tan\left (\dfrac { \pi }{ 4 }\right )=3sec(4π)tan(4π)
=3×2×1=3\times \sqrt { 2 } \times 1=3×2×1
=32=3\sqrt 2=32
If the functions f(x)=sin(x+a) \displaystyle f\left ( x \right )=\sin \left ( x+a \right ) f(x)=sin(x+a) and g(x)=bsinx+ccosx \displaystyle g\left ( x \right )=b\sin x+c\cos x g(x)=bsinx+ccosx satisfy f(0)=g(0) \displaystyle f\left ( 0 \right )=g\left ( 0 \right ) f(0)=g(0) and f′(0)=g′(0) \displaystyle {f}'\left ( 0 \right )={g}'\left ( 0 \right ) f′(0)=g′(0) then
dydx\displaystyle\frac{dy}{dx}dxdy at t=π4\displaystyle t=\frac{\pi}{4}t=4π for x=a[cost+12logtan2t2]\displaystyle x=a\left[\cos{t}+\frac{1}{2}\log{\tan^2{\frac{t}{2}}}\right]x=a[cost+21logtan22t] and y=asinty=a\sin{t}y=asint is
y=ln(cosx) y=\ln (\cos x) y=ln(cosx) হলে, dydx \frac{d y}{d x} dxdy এর মান কত?
y=sin(1x) y = \sin{\left ( \frac{1}{x} \right )} y=sin(x1) হলে dydx \frac{dy}{dx} dxdy এর মান-
নিচের কোনটি সঠিক?