ত্রিকোনমিতিক ফাংশনের অন্তরজ
If the functions f(x)=sin(x+a) \displaystyle f\left ( x \right )=\sin \left ( x+a \right ) f(x)=sin(x+a) and g(x)=bsinx+ccosx \displaystyle g\left ( x \right )=b\sin x+c\cos x g(x)=bsinx+ccosx satisfy f(0)=g(0) \displaystyle f\left ( 0 \right )=g\left ( 0 \right ) f(0)=g(0) and f′(0)=g′(0) \displaystyle {f}'\left ( 0 \right )={g}'\left ( 0 \right ) f′(0)=g′(0) then
b=π2 \displaystyle b=\dfrac{\pi}2 b=2π
b=cosa \displaystyle b=\cos a b=cosa
c=sina \displaystyle c=\sin a c=sina
c=cosa \displaystyle c=\cos a c=cosa
Given, f(x)=sin(x+a)f(x)=\sin(x+a)\quad f(x)=sin(x+a)
dydx\displaystyle\frac{dy}{dx}dxdy at t=π4\displaystyle t=\frac{\pi}{4}t=4π for x=a[cost+12logtan2t2]\displaystyle x=a\left[\cos{t}+\frac{1}{2}\log{\tan^2{\frac{t}{2}}}\right]x=a[cost+21logtan22t] and y=asinty=a\sin{t}y=asint is
y=ln(cosx) y=\ln (\cos x) y=ln(cosx) হলে, dydx \frac{d y}{d x} dxdy এর মান কত?
y=sin(1x) y = \sin{\left ( \frac{1}{x} \right )} y=sin(x1) হলে dydx \frac{dy}{dx} dxdy এর মান-
নিচের কোনটি সঠিক?
If the prime sign (') represents differentiation w.r.t. xxx and f′=sinx+sin4x.cosxf^{'}=\sin x+\sin 4x.\cos xf′=sinx+sin4x.cosx, then f′(2x2+π2)f^{'}\left ( 2x^{2}+\cfrac{\pi }{2} \right )f′(2x2+2π) at x=π2x=\sqrt{\dfrac{\pi }{2}}x=2π is equal to