x^n এর সহগ নির্ণয় বিষয়ক

If (1+x+x2+x3)5=a0+a1x+a2x2+....+a15x15\left(1+x+x^ {2}+x^ {3}\right)^ {5}=a_{0}+a_{1}x+a_{2}x^ {2}+....+a_{15}x^ {15}, then a10a_{10} equals

হানি নাটস

1+x+x2+x3=[1(1+x)+x2(1+x)] \Rightarrow 1+x+x^{2}+x^{3}=\left[1(1+x)+x^{2}(1+x)\right]

then (1+x+x2+x3)5=[(1+x)(1+x2)]5=(1+x)5(1+x2)5 \left(1+x+x^{2}+x^{3}\right)^{5}=\left[(1+x)\left(1+x^{2}\right)\right]^{5}=(1+x)^{5}\left(1+x^{2}\right)^{5}

=(1+x)5×[5C015+5C114x2+5C213x4+5C312x6+5C411x8+5C510x10] =(1+x)^{5} \times\left[{ }^{5} C_{0} 1^{5}+{ }^{5} C_{1} 1^{4} x^{2}+{ }^{5} C_{2} 1^{3} x^{4}+{ }^{5} C_{3} 1^{2} x^{6}+{ }^{5} C_{4} 1^{1} x^{8}+{ }^{5} C_{5} 1^{0} x^{10}\right]

a10= Coefficient of x10=(5C015×5C510)+(5C213×5C411)+(5C411×5C312) a_{10}=\text { Coefficient of } x^{10}=\left({ }^{5} C_{0} 1^{5} \times{ }^{5} C_{5} 1^{0}\right)+\left({ }^{5} C_{2} 1^{3} \times{ }^{5} C_{4} 1^{1}\right)+\left({ }^{5} C_{4} 1^{1} \times{ }^{5} C_{3} 1^{2}\right)

=1+50+50 =1+50+50

So, a10=101 a_{10}=101

x^n এর সহগ নির্ণয় বিষয়ক টপিকের ওপরে পরীক্ষা দাও