x^n এর সহগ নির্ণয় বিষয়ক
If the coefficients of x7x^7x7 and x8x^8x8 in (2+x3)n\displaystyle \left ( 2 + \frac{x}{3} \right )^n(2+3x)n are equal then n ===
45
55
35
27
Coefficient of x7=coefficientof</span><span>x^7 = coefficient of </span><span>x7=coefficientof</span><span>x^8
⇒6(nC7)=nC8\Rightarrow 6 (^nC_7)=^nC_8⇒6(nC7)=nC8
⇒6⋅n!(n−7)!7!=n!(n−8!)8!\Rightarrow 6 \cdot \displaystyle \frac{n!}{(n-7)!7!}=\frac{n!}{(n-8!)8!}⇒6⋅(n−7)!7!n!=(n−8!)8!n!
⇒6n−7=18⇒n−7=48\Rightarrow \displaystyle \frac{6}{n-7}=\frac{1}{8} \Rightarrow n-7 =48⇒n−76=81⇒n−7=48
⇒n=55\Rightarrow n = 55⇒n=55
The coefficient of x3 x^3 x3 in the expansion of (1+2x)6(1−x)7 (1+2x)^6(1-x)^7 (1+2x)6(1−x)7 is
The coefficient of x2x^2x2 in expansion of the product(2-x2x^2x2).((1+2x+3x2)6(1 + 2x + 3x^2)^6(1+2x+3x2)6 + (1−14x2)6(1-1 4x^2)^6(1−14x2)6) is :
(1-ax)⁸ এর বিস্তৃতিতে x² এবং x³ এর সহগ পরস্পর সমান হলে a এর মান কত?
(1+x1−x) \left ( \frac{1 + x}{1 - x} \right ) (1−x1+x) এর বিস্তৃতিতে x² এর সহগ কত?