ত্রিকোনমিতিক ফাংশনের অন্তরজ

If ,y=ln(1+x1x)2tan1x then,dydx=? , y = \ln{\left( \frac{1 + x}{1 - x} \right )} - 2 \tan^{- 1}{x} \text{ } t h e n , \frac{dy}{dx} = ?

We are given the function:

y=ln(1+x1x)2tan1x y=\ln \left(\frac{1+x}{1-x}\right)-2 \tan ^{-1} x

We need to differentiate y y with respect to x x .

Step 1: Differentiate the first term

y1=ln(1+x1x) y_{1}=\ln \left(\frac{1+x}{1-x}\right)

Using the derivative formula for lnf(x) \ln f(x) :

ddxlnf(x)=1f(x)f(x) \frac{d}{d x} \ln f(x)=\frac{1}{f(x)} \cdot f^{\prime}(x)

where f(x)=1+x1x f(x)=\frac{1+x}{1-x} . Differentiate using the quotient rule:

f(x)=(1x)(1)(1+x)(1)(1x)2=1x+1+x(1x)2=2(1x)2 \begin{array}{c} f^{\prime}(x)=\frac{(1-x)(1)-(1+x)(-1)}{(1-x)^{2}} \\ \quad=\frac{1-x+1+x}{(1-x)^{2}}=\frac{2}{(1-x)^{2}} \end{array}

So,

ddxln(1+x1x)=11+x1x2(1x)2=(1x)(1+x)2(1x)2=2(1x)(1+x)(1x)2=2(1x)(1+x) \begin{array}{l} \frac{d}{d x} \ln \left(\frac{1+x}{1-x}\right)=\frac{1}{\frac{1+x}{1-x}} \cdot \frac{2}{(1-x)^{2}} \\ =\frac{(1-x)}{(1+x)} \cdot \frac{2}{(1-x)^{2}} \\ =\frac{2(1-x)}{(1+x)(1-x)^{2}} \\ =\frac{2}{(1-x)(1+x)} \end{array}

Since 1x2=(1x)(1+x) 1-x^{2}=(1-x)(1+x) , we get

ddxln(1+x1x)=21x2 \frac{d}{d x} \ln \left(\frac{1+x}{1-x}\right)=\frac{2}{1-x^{2}}

Step 2: Differentiate the second term

y2=2tan1x y_{2}=-2 \tan ^{-1} x

Using the derivative formula:

ddxtan1x=11+x2 \frac{d}{d x} \tan ^{-1} x=\frac{1}{1+x^{2}}

we get:

ddx(2tan1x)=211+x2=21+x2 \frac{d}{d x}\left(-2 \tan ^{-1} x\right)=-2 \cdot \frac{1}{1+x^{2}}=\frac{-2}{1+x^{2}}

Step 3: Compute dydx \frac{d y}{d x}

dydx=21x221+x2 \frac{d y}{d x}=\frac{2}{1-x^{2}}-\frac{2}{1+x^{2}}

Step 4: Simplify

Taking the LCM:

(1x2)(1+x2)=1x42(1+x2)2(1x2)1x4=2+2x22+2x21x4=4x21x4 \begin{array}{c} \left(1-x^{2}\right)\left(1+x^{2}\right)=1-x^{4} \\ \frac{2\left(1+x^{2}\right)-2\left(1-x^{2}\right)}{1-x^{4}} \\ =\frac{2+2 x^{2}-2+2 x^{2}}{1-x^{4}} \\ =\frac{4 x^{2}}{1-x^{4}} \end{array}

Thus, the final result is:

dydx=4x21x4 \frac{d y}{d x}=\frac{4 x^{2}}{1-x^{4}}

ত্রিকোনমিতিক ফাংশনের অন্তরজ টপিকের ওপরে পরীক্ষা দাও