If ,y=ln(1−x1+x)−2tan−1x then,dxdy=?
We are given the function:
y=ln(1−x1+x)−2tan−1x
We need to differentiate y with respect to x.
Step 1: Differentiate the first term
y1=ln(1−x1+x)
Using the derivative formula for lnf(x) :
dxdlnf(x)=f(x)1⋅f′(x)
where f(x)=1−x1+x. Differentiate using the quotient rule:
f′(x)=(1−x)2(1−x)(1)−(1+x)(−1)=(1−x)21−x+1+x=(1−x)22
So,
dxdln(1−x1+x)=1−x1+x1⋅(1−x)22=(1+x)(1−x)⋅(1−x)22=(1+x)(1−x)22(1−x)=(1−x)(1+x)2
Since 1−x2=(1−x)(1+x), we get
dxdln(1−x1+x)=1−x22
Step 2: Differentiate the second term
y2=−2tan−1x
Using the derivative formula:
dxdtan−1x=1+x21
we get:
dxd(−2tan−1x)=−2⋅1+x21=1+x2−2
Step 3: Compute dxdy
dxdy=1−x22−1+x22
Step 4: Simplify
Taking the LCM:
(1−x2)(1+x2)=1−x41−x42(1+x2)−2(1−x2)=1−x42+2x2−2+2x2=1−x44x2
Thus, the final result is:
dxdy=1−x44x2