x^n এর সহগ নির্ণয় বিষয়ক

The coefficient of ; x8x ^ { 8 }& ; in the expansion of  (1+x4)3(1x)12\left( 1 + x ^ { 4 } \right) ^ { 3 } ( 1 - x ) ^ { 12 }  is

হানি নাটস

\rightarrow If a a and b b are real numbers and n n is a positive integer,

then (a+b)n=nC0an+nC1an1b1+nC2an2b2+nC3an3b3 (a+b)^{n}=n C_{0} a^{n}+n C_{1} a^{n-1} b^{1}+n C_{2} a^{n-2} b^{2}+n C_{3} a^{n-3} b^{3}

++nCranrbr++nCnbn +\ldots \ldots+n C_{r} a^{n-r} b^{r}+\ldots+n C_{n} b^{n}

where nCr=n!r!(nr)! { }^{n} C_{r}=\frac{n !}{r !(n-r) !} \quad for 0rn 0 \leq r \leq n

Expansion of (1+x4)3=3C013+3C112x4+3C211x8+3C3x12 \left(1+x^{4}\right)^{3}={ }^{3} C_{0} 1^{3}+{ }^{3} C_{1} 1^{2} x^{4}+{ }^{3} C_{2} 1^{1} x^{8}+{ }^{3} C_{3} x^{12}

and the general term in expansion of (1x)12=12Cr1(12r)xr (1-x)^{12}={ }^{12} C_{r} 1^{(12-r)} x^{r}

The coefficient of x8 x^{8} in the expansion of (1+x4)3(1x)12 \left(1+x^{4}\right)^{3}(1-x)^{12} :

=(3C013×12C814)+(3C112×12C418)+(3C211×12C0112)=(1×12C8)+(3×12C4)+(3×12C0)=12C8+312C4+312C8=12C412C8+312C4+3=412C4+3 \begin{array}{l} =\left({ }^{3} C_{0} 1^{3} \times{ }^{12} C_{8} 1^{4}\right)+\left({ }^{3} C_{1} 1^{2} \times{ }^{12} C_{4} 1^{8}\right)+\left({ }^{3} C_{2} 1^{1} \times{ }^{12} C_{0} 1^{12}\right) \\ =\left(1 \times{ }^{12} C_{8}\right)+\left(3 \times{ }^{12} C_{4}\right)+\left(3 \times{ }^{12} C_{0}\right) \\ ={ }^{12} C_{8}+3^{12} C_{4}+3 \\ \because{ }^{12} C_{8}={ }^{12} C_{4} \\ \therefore{ }^{12} C_{8}+3^{12} C_{4}+3=4{ }^{12} C_{4}+3 \end{array}

So, the coefficient of x8=3+4×12C4 x^{8}=3+4 \times{ }^{12} C_{4}

x^n এর সহগ নির্ণয় বিষয়ক টপিকের ওপরে পরীক্ষা দাও