The coefficient of ; x8& ; in the expansion of (1+x4)3(1−x)12 is
হানি নাটস
→ If a and b are real numbers and n is a positive integer,
then (a+b)n=nC0an+nC1an−1b1+nC2an−2b2+nC3an−3b3
+……+nCran−rbr+…+nCnbn
where nCr=r!(n−r)!n! for 0≤r≤n
Expansion of (1+x4)3=3C013+3C112x4+3C211x8+3C3x12
and the general term in expansion of (1−x)12=12Cr1(12−r)xr
The coefficient of x8 in the expansion of (1+x4)3(1−x)12 :
=(3C013×12C814)+(3C112×12C418)+(3C211×12C0112)=(1×12C8)+(3×12C4)+(3×12C0)=12C8+312C4+3∵12C8=12C4∴12C8+312C4+3=412C4+3
So, the coefficient of x8=3+4×12C4