সমীকরণ সমাধান

The number of real solutions of the equation sin(ex)=5x+5x\sin \left( e ^ { x } \right) = 5 ^ { x } + 5 ^ { - x } is ____________________.

হানি নাটস

 Let y1=sin(ex)y2=5x+5x \text { Let } \begin{aligned} y_{1} & =\sin \left(\mathrm{e}^{\mathrm{x}}\right) \\ \mathrm{y}_{2} & =5^{\mathrm{x}}+5^{-\mathrm{x}} \end{aligned}

Now, 0<ex< 0<\mathrm{e}^{\mathrm{x}}<\infty

1sin(ex)1 \therefore-1 \leq \sin \left(\mathrm{e}^{\mathrm{x}}\right) \leq 1

(y1)max=1 \therefore\left(\mathrm{y}_{1}\right)_{\max }=1

(y1)min =1 \therefore\left(\mathrm{y}_{1}\right)_{\text {min }}=-1

y2=5x+5x=5x+15x \mathrm{y}_{2}=5^{\mathrm{x}}+5^{-\mathrm{x}}=5^{\mathrm{x}}+\frac{1}{5^{\mathrm{x}}}

Now, 5x>0 5^{\mathrm{x}}>0

Let 5x=t 5^{\mathrm{x}}=\mathrm{t}

y2=t+1t \therefore \mathrm{y}_{2}=\mathrm{t}+\frac{1}{\mathrm{t}}

Now, t+1t2 t+\frac{1}{t} \geq 2 if t>0 \quad t>0

Hence, y22 \mathrm{y}_{2} \geq 2

(y2)min=2 \Rightarrow\left(\mathrm{y}_{2}\right)_{\min }=2

Therefore, y1y2 \mathrm{y}_{1} \neq \mathrm{y}_{2}

\therefore No real solutions of the equation.

sin(ex)=5x+5x \sin \left(e^{x}\right)=5^{x}+5^{-x} has zero solution.

সমীকরণ সমাধান টপিকের ওপরে পরীক্ষা দাও